Innovative Structural Materials
Title | Innovative Structural Materials PDF eBook |
Author | Teruo Kishi |
Publisher | Springer Nature |
Pages | 381 |
Release | 2023-07-27 |
Genre | Technology & Engineering |
ISBN | 9819935229 |
This book is devoted to innovative structural materials for multi-materialization. It is based on results of a 10-year national project, The Innovative Structural Materials Research and Development Project, which was carried out in Japan, aimed at reducing the weight of materials (steel, aluminum alloys, magnesium alloys, titanium alloys, thermoplastic CFRP, carbon fiber) and components used in transportation equipment such as automobiles. In this project, collaborative research in a total of nine fields including materials, joining, and structural designing was also carried out in order to realize multi-materials. This book is compiled with the aim of handing down the technical and academic results obtained through these research and development activities to the next generation of researchers and students. This book enables material engineers and researchers in the field of materials related to transportation equipment, graduate students in various technical fields, and engineers and researchers belonging to material users to grasp the full picture of material development and multi-materials technologies. For the understanding of engineers and researchers who will work on multi-materials, this book explains the current state of technology and science in each field and explains the innovative results obtained by research in each field.
New Materials in Civil Engineering
Title | New Materials in Civil Engineering PDF eBook |
Author | Pijush Samui |
Publisher | Butterworth-Heinemann |
Pages | 1105 |
Release | 2020-07-07 |
Genre | Technology & Engineering |
ISBN | 0128190752 |
New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials. - Covers a variety of materials, including fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber reinforced polymer and waste materials - Provides a "one-stop resource of information for the latest materials and practical applications - Includes a variety of different use case studies
New Materials for Next-Generation Commercial Transports
Title | New Materials for Next-Generation Commercial Transports PDF eBook |
Author | Committee on New Materials for Advanced Civil Aircraft |
Publisher | National Academies Press |
Pages | 99 |
Release | 1996-03-29 |
Genre | Technology & Engineering |
ISBN | 0309588782 |
The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions. Based on these predictions, the committee attempted to identify the design, characterization, monitoring, and maintenance issues that are critical for the introduction of advanced materials and structural concepts into future aircraft.
Structural Materials for Generation IV Nuclear Reactors
Title | Structural Materials for Generation IV Nuclear Reactors PDF eBook |
Author | Pascal Yvon |
Publisher | Woodhead Publishing |
Pages | 686 |
Release | 2016-08-27 |
Genre | Technology & Engineering |
ISBN | 0081009127 |
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area
Long Term Durability of Structural Materials
Title | Long Term Durability of Structural Materials PDF eBook |
Author | P.J.M. Monteiro |
Publisher | Elsevier |
Pages | 313 |
Release | 2001-08-29 |
Genre | Technology & Engineering |
ISBN | 0080535593 |
"Long Term Durability of Structural Materials" features proceedings of the workshop held at Berkeley, CA in October, 2000. It brought together engineers and scientists, who have received grants from the initiative NSF 98-42, to share their results on the study of long-term durability of materials and structures. The major objective was to develop new methods for accelerated short-term laboratory or in-situ tests which allow accurate, reliable, predictions of the long-term performance of materials, machines and structures. To achieve this goal it was important to understand the fundamental nature of the deterioration and damage processes in materials and to develop innovative ways to model the behavior of these processes as they affect the life and long-term performance of components, machines and structures. The researchers discussed their approach to include size effects in scaling up from laboratory specimens to actual structures. Accelerated testing and durability modeling techniques developed were validated by comparing their results with performance under actual operating conditions. The main mechanism of the deterioration discussed included environmental effects and/or exposure to loads, speeds and other operating conditions that are not fully anticipated in the original design. A broad range of deterioration damage, such as fatigue, overload, ultraviolet damage, corrosion, and wear was presented. A broad range of materials of interest was also discussed, including the full spectrum of construction materials, metals, ceramics, polymers, composites, and coatings. Emphasis was placed on scale-dependence and history of fabrication on resulting mechanical behavior of materials.
Rheology and Processing of Construction Materials
Title | Rheology and Processing of Construction Materials PDF eBook |
Author | Viktor Mechtcherine |
Publisher | Springer Nature |
Pages | 683 |
Release | 2019-08-24 |
Genre | Technology & Engineering |
ISBN | 3030225666 |
This book gathers the peer-reviewed contributions presented at two parallel, closely interconnected events on advanced construction materials and processes, namely the 2nd International RILEM Conference on Rheology and Processing of Construction Materials (RheoCon2) and the 9th International RILEM Symposium on Self-Compacting Concrete (SCC9), held in Dresden, Germany on 8-11 September 2019. The papers discuss various aspects of research on the development, testing, and applications of cement-based and other building materials together with their specific rheological properties. Furthermore, the papers cover the latest findings in the fast-growing field of self-compacting concrete, addressing topics including components’ properties and characterization; chemical admixtures, effect of binders (incl. geopolymers, calcined clay, etc.) and mixture design; laboratory and in-situ rheological testing; constitutive models and flow modelling; numerical simulations; mixing, processing and casting processes; and additive manufacturing / 3D-printing. Also presenting case studies, the book is of interest to researchers, graduate students, and industry specialists, such as material suppliers, consultants and construction experts.
Concise Encyclopedia of Building and Construction Materials
Title | Concise Encyclopedia of Building and Construction Materials PDF eBook |
Author | Fred Moavenzadeh |
Publisher | MIT Press |
Pages | 714 |
Release | 1990 |
Genre | Architecture |
ISBN | 9780262132480 |
The building materials covered by the Concise Encyclopedia of Building and Construction Materials are classified in three groups: structural materials, semistructural materials, and auxiliary materials.