Innovative Statistics in Regulatory Science

Innovative Statistics in Regulatory Science
Title Innovative Statistics in Regulatory Science PDF eBook
Author Shein-Chung Chow
Publisher CRC Press
Pages 553
Release 2019-11-18
Genre Mathematics
ISBN 1000710033

Download Innovative Statistics in Regulatory Science Book in PDF, Epub and Kindle

Statistical methods that are commonly used in the review and approval process of regulatory submissions are usually referred to as statistics in regulatory science or regulatory statistics. In a broader sense, statistics in regulatory science can be defined as valid statistics that are employed in the review and approval process of regulatory submissions of pharmaceutical products. In addition, statistics in regulatory science are involved with the development of regulatory policy, guidance, and regulatory critical clinical initiatives related research. This book is devoted to the discussion of statistics in regulatory science for pharmaceutical development. It covers practical issues that are commonly encountered in regulatory science of pharmaceutical research and development including topics related to research activities, review of regulatory submissions, recent critical clinical initiatives, and policy/guidance development in regulatory science. Devoted entirely to discussing statistics in regulatory science for pharmaceutical development. Reviews critical issues (e.g., endpoint/margin selection and complex innovative design such as adaptive trial design) in the pharmaceutical development and regulatory approval process. Clarifies controversial statistical issues (e.g., hypothesis testing versus confidence interval approach, missing data/estimands, multiplicity, and Bayesian design and approach) in review/approval of regulatory submissions. Proposes innovative thinking regarding study designs and statistical methods (e.g., n-of-1 trial design, adaptive trial design, and probability monitoring procedure for sample size) for rare disease drug development. Provides insight regarding current regulatory clinical initiatives (e.g., precision/personalized medicine, biomarker-driven target clinical trials, model informed drug development, big data analytics, and real world data/evidence). This book provides key statistical concepts, innovative designs, and analysis methods that are useful in regulatory science. Also included are some practical, challenging, and controversial issues that are commonly seen in the review and approval process of regulatory submissions. About the author Shein-Chung Chow, Ph.D. is currently a Professor at Duke University School of Medicine, Durham, NC. He was previously the Associate Director at the Office of Biostatistics, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA). Dr. Chow has also held various positions in the pharmaceutical industry such as Vice President at Millennium, Cambridge, MA, Executive Director at Covance, Princeton, NJ, and Director and Department Head at Bristol-Myers Squibb, Plainsboro, NJ. He was elected Fellow of the American Statistical Association and an elected member of the ISI (International Statistical Institute). Dr. Chow is Editor-in-Chief of the Journal of Biopharmaceutical Statistics and Biostatistics Book Series, Chapman and Hall/CRC Press, Taylor & Francis, New York. Dr. Chow is the author or co-author of over 300 methodology papers and 30 books.

Innovative Statistics in Regulatory Science

Innovative Statistics in Regulatory Science
Title Innovative Statistics in Regulatory Science PDF eBook
Author Shein-Chung Chow
Publisher CRC Press
Pages 352
Release 2019-11-14
Genre Mathematics
ISBN 1000710815

Download Innovative Statistics in Regulatory Science Book in PDF, Epub and Kindle

Statistical methods that are commonly used in the review and approval process of regulatory submissions are usually referred to as statistics in regulatory science or regulatory statistics. In a broader sense, statistics in regulatory science can be defined as valid statistics that are employed in the review and approval process of regulatory submissions of pharmaceutical products. In addition, statistics in regulatory science are involved with the development of regulatory policy, guidance, and regulatory critical clinical initiatives related research. This book is devoted to the discussion of statistics in regulatory science for pharmaceutical development. It covers practical issues that are commonly encountered in regulatory science of pharmaceutical research and development including topics related to research activities, review of regulatory submissions, recent critical clinical initiatives, and policy/guidance development in regulatory science. Devoted entirely to discussing statistics in regulatory science for pharmaceutical development. Reviews critical issues (e.g., endpoint/margin selection and complex innovative design such as adaptive trial design) in the pharmaceutical development and regulatory approval process. Clarifies controversial statistical issues (e.g., hypothesis testing versus confidence interval approach, missing data/estimands, multiplicity, and Bayesian design and approach) in review/approval of regulatory submissions. Proposes innovative thinking regarding study designs and statistical methods (e.g., n-of-1 trial design, adaptive trial design, and probability monitoring procedure for sample size) for rare disease drug development. Provides insight regarding current regulatory clinical initiatives (e.g., precision/personalized medicine, biomarker-driven target clinical trials, model informed drug development, big data analytics, and real world data/evidence). This book provides key statistical concepts, innovative designs, and analysis methods that are useful in regulatory science. Also included are some practical, challenging, and controversial issues that are commonly seen in the review and approval process of regulatory submissions. About the author Shein-Chung Chow, Ph.D. is currently a Professor at Duke University School of Medicine, Durham, NC. He was previously the Associate Director at the Office of Biostatistics, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA). Dr. Chow has also held various positions in the pharmaceutical industry such as Vice President at Millennium, Cambridge, MA, Executive Director at Covance, Princeton, NJ, and Director and Department Head at Bristol-Myers Squibb, Plainsboro, NJ. He was elected Fellow of the American Statistical Association and an elected member of the ISI (International Statistical Institute). Dr. Chow is Editor-in-Chief of the Journal of Biopharmaceutical Statistics and Biostatistics Book Series, Chapman and Hall/CRC Press, Taylor & Francis, New York. Dr. Chow is the author or co-author of over 300 methodology papers and 30 books.

Strengthening a Workforce for Innovative Regulatory Science in Therapeutics Development

Strengthening a Workforce for Innovative Regulatory Science in Therapeutics Development
Title Strengthening a Workforce for Innovative Regulatory Science in Therapeutics Development PDF eBook
Author Institute of Medicine
Publisher National Academies Press
Pages 118
Release 2012-04-04
Genre Medical
ISBN 0309222176

Download Strengthening a Workforce for Innovative Regulatory Science in Therapeutics Development Book in PDF, Epub and Kindle

The development and application of regulatory science - which FDA has defined as the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of FDA-regulated products - calls for a well-trained, scientifically engaged, and motivated workforce. FDA faces challenges in retaining regulatory scientists and providing them with opportunities for professional development. In the private sector, advancement of innovative regulatory science in drug development has not always been clearly defined, well coordinated, or connected to the needs of the agency. As a follow-up to a 2010 workshop, the IOM held a workshop on September 20-21, 2011, to provide a format for establishing a specific agenda to implement the vision and principles relating to a regulatory science workforce and disciplinary infrastructure as discussed in the 2010 workshop.

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials
Title Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials PDF eBook
Author Mark Chang
Publisher CRC Press
Pages 255
Release 2019-03-20
Genre Mathematics
ISBN 1351214527

Download Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials Book in PDF, Epub and Kindle

"This is truly an outstanding book. [It] brings together all of the latest research in clinical trials methodology and how it can be applied to drug development.... Chang et al provide applications to industry-supported trials. This will allow statisticians in the industry community to take these methods seriously." Jay Herson, Johns Hopkins University The pharmaceutical industry's approach to drug discovery and development has rapidly transformed in the last decade from the more traditional Research and Development (R & D) approach to a more innovative approach in which strategies are employed to compress and optimize the clinical development plan and associated timelines. However, these strategies are generally being considered on an individual trial basis and not as part of a fully integrated overall development program. Such optimization at the trial level is somewhat near-sighted and does not ensure cost, time, or development efficiency of the overall program. This book seeks to address this imbalance by establishing a statistical framework for overall/global clinical development optimization and providing tactics and techniques to support such optimization, including clinical trial simulations. Provides a statistical framework for achieve global optimization in each phase of the drug development process. Describes specific techniques to support optimization including adaptive designs, precision medicine, survival-endpoints, dose finding and multiple testing. Gives practical approaches to handling missing data in clinical trials using SAS. Looks at key controversial issues from both a clinical and statistical perspective. Presents a generous number of case studies from multiple therapeutic areas that help motivate and illustrate the statistical methods introduced in the book. Puts great emphasis on software implementation of the statistical methods with multiple examples of software code (both SAS and R). It is important for statisticians to possess a deep knowledge of the drug development process beyond statistical considerations. For these reasons, this book incorporates both statistical and "clinical/medical" perspectives.

Sharing Clinical Trial Data

Sharing Clinical Trial Data
Title Sharing Clinical Trial Data PDF eBook
Author Institute of Medicine
Publisher National Academies Press
Pages 236
Release 2015-04-20
Genre Medical
ISBN 0309316324

Download Sharing Clinical Trial Data Book in PDF, Epub and Kindle

Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.

Pharmaceutical Regulatory Science (English Edition)

Pharmaceutical Regulatory Science (English Edition)
Title Pharmaceutical Regulatory Science (English Edition) PDF eBook
Author
Publisher Thakur Publication Private Limited
Pages 144
Release 2021-03-09
Genre Education
ISBN 9390972027

Download Pharmaceutical Regulatory Science (English Edition) Book in PDF, Epub and Kindle

Buy E-Book of Pharmaceutical Regulatory Science (English Edition) Book For B.Pharm 8th Semester of U.P. State Universities

Innovative Methods for Rare Disease Drug Development

Innovative Methods for Rare Disease Drug Development
Title Innovative Methods for Rare Disease Drug Development PDF eBook
Author Shein-Chung Chow
Publisher CRC Press
Pages 286
Release 2020-11-11
Genre Mathematics
ISBN 1000208338

Download Innovative Methods for Rare Disease Drug Development Book in PDF, Epub and Kindle

In the United States, a rare disease is defined by the Orphan Drug Act as a disorder or condition that affects fewer than 200,000 persons. For the approval of "orphan" drug products for rare diseases, the traditional approach of power analysis for sample size calculation is not feasible because there are only limited number of subjects available for clinical trials. In this case, innovative approaches are needed for providing substantial evidence meeting the same standards for statistical assurance as drugs used to treat common conditions. Innovative Methods for Rare Disease Drug Development focuses on biostatistical applications in terms of design and analysis in pharmaceutical research and development from both regulatory and scientific (statistical) perspectives. Key Features: Reviews critical issues (e.g., endpoint/margin selection, sample size requirements, and complex innovative design). Provides better understanding of statistical concepts and methods which may be used in regulatory review and approval. Clarifies controversial statistical issues in regulatory review and approval accurately and reliably. Makes recommendations to evaluate rare diseases regulatory submissions. Proposes innovative study designs and statistical methods for rare diseases drug development, including n-of-1 trial design, adaptive trial design, and master protocols like platform trials. Provides insight regarding current regulatory guidance on rare diseases drug development like gene therapy.