Introduction to Information Retrieval

Introduction to Information Retrieval
Title Introduction to Information Retrieval PDF eBook
Author Christopher D. Manning
Publisher Cambridge University Press
Pages
Release 2008-07-07
Genre Computers
ISBN 1139472100

Download Introduction to Information Retrieval Book in PDF, Epub and Kindle

Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.

Experiment and Evaluation in Information Retrieval Models

Experiment and Evaluation in Information Retrieval Models
Title Experiment and Evaluation in Information Retrieval Models PDF eBook
Author K. Latha
Publisher CRC Press
Pages 282
Release 2017-07-28
Genre Computers
ISBN 1315392615

Download Experiment and Evaluation in Information Retrieval Models Book in PDF, Epub and Kindle

Experiment and Evaluation in Information Retrieval Models explores different algorithms for the application of evolutionary computation to the field of information retrieval (IR). As well as examining existing approaches to resolving some of the problems in this field, results obtained by researchers are critically evaluated in order to give readers a clear view of the topic. In addition, this book covers Algorithmic Solutions to the Problems in Advanced IR Concepts, including Feature Selection for Document Ranking, web page classification and recommendation, Facet Generation for Document Retrieval, Duplication Detection and seeker satisfaction in question answering community Portals. Written with students and researchers in the field on information retrieval in mind, this book is also a useful tool for researchers in the natural and social sciences interested in the latest developments in the fast-moving subject area. Key features: Focusing on recent topics in Information Retrieval research, Experiment and Evaluation in Information Retrieval Models explores the following topics in detail: Searching in social media Using semantic annotations Ranking documents based on Facets Evaluating IR systems offline and online The role of evolutionary computation in IR Document and term clustering, Image retrieval Design of user profiles for IR Web page classification and recommendation Relevance feedback approach for Document and image retrieval

Language Modeling for Information Retrieval

Language Modeling for Information Retrieval
Title Language Modeling for Information Retrieval PDF eBook
Author W. Bruce Croft
Publisher Springer Science & Business Media
Pages 253
Release 2013-04-17
Genre Computers
ISBN 9401701717

Download Language Modeling for Information Retrieval Book in PDF, Epub and Kindle

A statisticallanguage model, or more simply a language model, is a prob abilistic mechanism for generating text. Such adefinition is general enough to include an endless variety of schemes. However, a distinction should be made between generative models, which can in principle be used to synthesize artificial text, and discriminative techniques to classify text into predefined cat egories. The first statisticallanguage modeler was Claude Shannon. In exploring the application of his newly founded theory of information to human language, Shannon considered language as a statistical source, and measured how weH simple n-gram models predicted or, equivalently, compressed natural text. To do this, he estimated the entropy of English through experiments with human subjects, and also estimated the cross-entropy of the n-gram models on natural 1 text. The ability of language models to be quantitatively evaluated in tbis way is one of their important virtues. Of course, estimating the true entropy of language is an elusive goal, aiming at many moving targets, since language is so varied and evolves so quickly. Yet fifty years after Shannon's study, language models remain, by all measures, far from the Shannon entropy liInit in terms of their predictive power. However, tbis has not kept them from being useful for a variety of text processing tasks, and moreover can be viewed as encouragement that there is still great room for improvement in statisticallanguage modeling.

Web Semantics for Textual and Visual Information Retrieval

Web Semantics for Textual and Visual Information Retrieval
Title Web Semantics for Textual and Visual Information Retrieval PDF eBook
Author Singh, Aarti
Publisher IGI Global
Pages 311
Release 2017-02-22
Genre Computers
ISBN 1522524843

Download Web Semantics for Textual and Visual Information Retrieval Book in PDF, Epub and Kindle

Modern society exists in a digital era in which high volumes of multimedia information exists. To optimize the management of this data, new methods are emerging for more efficient information retrieval. Web Semantics for Textual and Visual Information Retrieval is a pivotal reference source for the latest academic research on embedding and associating semantics with multimedia information to improve data retrieval techniques. Highlighting a range of pertinent topics such as automation, knowledge discovery, and social networking, this book is ideally designed for researchers, practitioners, students, and professionals interested in emerging trends in information retrieval.

Information Retrieval: Uncertainty and Logics

Information Retrieval: Uncertainty and Logics
Title Information Retrieval: Uncertainty and Logics PDF eBook
Author Fabio Crestani
Publisher Springer Science & Business Media
Pages 362
Release 1998-10-31
Genre Computers
ISBN 9780792383024

Download Information Retrieval: Uncertainty and Logics Book in PDF, Epub and Kindle

A collection of papers proposing, developing, and implementing logical IR models. After an introductory chapter on non-classical logic as the appropriate formalism with which to build IR models, papers are divided into groups on three approaches: logical models, uncertainty models, and meta-models. Topics include preferential models of query by navigation, a logic for multimedia information retrieval, logical imaging and probabilistic information retrieval, and an axiomatic aboutness theory for information retrieval. Can be used as a text for a graduate course on information retrieval or database systems, and as a reference for researchers and practitioners in industry. Annotation copyrighted by Book News, Inc., Portland, OR

An Introduction to Neural Information Retrieval

An Introduction to Neural Information Retrieval
Title An Introduction to Neural Information Retrieval PDF eBook
Author Bhaskar Mitra
Publisher Foundations and Trends (R) in Information Retrieval
Pages 142
Release 2018-12-23
Genre
ISBN 9781680835328

Download An Introduction to Neural Information Retrieval Book in PDF, Epub and Kindle

Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.

Information Retrieval and Management: Concepts, Methodologies, Tools, and Applications

Information Retrieval and Management: Concepts, Methodologies, Tools, and Applications
Title Information Retrieval and Management: Concepts, Methodologies, Tools, and Applications PDF eBook
Author Management Association, Information Resources
Publisher IGI Global
Pages 2373
Release 2018-01-05
Genre Computers
ISBN 1522551921

Download Information Retrieval and Management: Concepts, Methodologies, Tools, and Applications Book in PDF, Epub and Kindle

With the increased use of technology in modern society, high volumes of multimedia information exists. It is important for businesses, organizations, and individuals to understand how to optimize this data and new methods are emerging for more efficient information management and retrieval. Information Retrieval and Management: Concepts, Methodologies, Tools, and Applications is an innovative reference source for the latest academic material in the field of information and communication technologies and explores how complex information systems interact with and affect one another. Highlighting a range of topics such as knowledge discovery, semantic web, and information resources management, this multi-volume book is ideally designed for researchers, developers, managers, strategic planners, and advanced-level students.