Influence of Material and Processing on Stress Corrosion Cracking of Prestressing Steel - Case Studies

Influence of Material and Processing on Stress Corrosion Cracking of Prestressing Steel - Case Studies
Title Influence of Material and Processing on Stress Corrosion Cracking of Prestressing Steel - Case Studies PDF eBook
Author fib Fédération internationale du béton
Publisher fib Fédération internationale du béton
Pages 52
Release 2003
Genre Technology & Engineering
ISBN 9782883940666

Download Influence of Material and Processing on Stress Corrosion Cracking of Prestressing Steel - Case Studies Book in PDF, Epub and Kindle

This report is a review of selected failures in concrete structures in which prestressing steels break in a brittle way due to stress corrosion cracking. Most cases are from the German experience over a period of about 30 years. Analysis of these failures shows that they are often due to an accumulation of causes such as poor design, errors during construction, careless detailing and, in some cases, use of unsuitable materials. This report will have achieved its purpose if it serves to avoid these past errors and encourages the development of new ways to protect, test and regulate prestressing steels. The report is complemented with comments on the properties and corrosion behaviour of different types of prestressing steels. The goal of the study is to provide objective arguments for the discussion of failures that have occurred due to corrosion induced failure of prestressing steel. In such a way the general regulation given in DIN with respect to reinforcement for robustness may eventually be proven inappropriate. The general building authority approval for prestressed hollow filler block floors already supports such an idea. It is well known that the hollow block floor industry works without any reinforcing steel. The regulations in the standards should not limit in particular the use of these types of prestressing steel (cold-formed wires, strands) which have proven not associated with any substantial failures cases reported in the last 35 years. The report reviews the historical development with respect to corrosion induced failure of prestressing steel. Concerning the circumstances of the failure examples, this review partly reflects a specific problem in Germany. Also reviewed are other known interregional examples of failure which are incorrectly attributed to the prestressed construction method. All cases considered are discussed and the failure reasons thoroughly evaluated, also with reference to the results of most recent research. Another question addressed is whether one should be concerned over corrosion induced retarded failure even when using new generation prestressing steel with correct corrosion protection. Finally a contribution to the following very important question is presented: Do the future prestressed structures possess enough safety against structural failure if they are constructed without reinforcement for robustness but otherwise comply completely with the design standards? To aid a better understanding of this short report on typical failure cases and their origins, the main conditions are set out for corrosion-induced failure of prestressing steel in technical applications. The properties of different types of prestressing steel and their application limits are given in a special section dealing with the influence of building materials on damage development. This report will be of interest to all involved in the construction process. Fundamental scientific discussion has been avoided by reference to well accredited detailed information in the technical literature.

Sustainability of precast structures

Sustainability of precast structures
Title Sustainability of precast structures PDF eBook
Author FIB – International Federation for Structural Concrete
Publisher FIB - Féd. Int. du Béton
Pages 163
Release 2018-12-01
Genre Technology & Engineering
ISBN 2883941289

Download Sustainability of precast structures Book in PDF, Epub and Kindle

Sustainability is a crucial concept. Sustainability was first introduced in the fib by creating a Special Activity Group under the convenorship of Prof Sakai. This group encouraged and helped all fib commissions to create their own groups dealing with sustainability. The fib Commission 6 “Prefabrication” took up this challenge and created a Task Group called “Sustainability of Structures with Precast Elements” in 2012. The group was created as a joint group with PCI (Precast Concrete Institute of USA), with the then-active fib Commission 3 “Environmental aspects of design and construction”, and the fib’s SAG8 on Sustainability. Therefore, this Bulletin 88 is a joint publication between PCI and fib. The aim of the work was to gather and study the most recent work that has been developed regarding sustainability – and more particularly Life Cycle Assessment - of structures in which precast elements are used. The final aim of the group would be to provide recommendations for the study and assessment of structures built with precast elements. It will cover all aspects of this kind of structure, from planning, design, execution, use, maintenance and remedial activities to deconstruction, reuse, demolition and recycling. The fib holds sustainability as a high priority, which triggered the creation of a new Commission 7 “Sustainability” during the 2015 fib commissions reorganisation. This commission has been chaired since then by Prof Hájek. Sustainability concepts were already introduced in the Model Code 2010 and are a key part in the elaboration of the Model Code 2020. Experts from many parts of the world contributed to this fib Bulletin 88 which gives the document a broad overview of sustainability sensibilities across different continents. Bulletin 88 starts with a description of the importance of environmental concepts and developments in the world today and the reason why sustainability is a crucial concept that will be even more important in the future. The document then focuses on the different advances of standards and regulations that have been developed or are in the process of being implemented. ISO, European regulations, North American regulations, Brazilian implementation in real precast companies and the developments of the fib Model Codes have been considered in this bulletin. After that, the bulletin examines life cycle aspects of precast structures, taking former fib bulletins as a basis. Then, it moves on to an in-depth study of specific sustainability aspects of precast structures. Then, the bulletin deals with the special methodologies and tools that are available around the world to handle sustainability in general and with precast structures in particular. A selection of tools is described in this chapter. The Task Group also developed proposals about how to deal with the sustainability of precast structures. Some of the proposals are described conceptually in the text. The final chapter compiles several case studies or examples of sustainability applications of precast structures. The examples differ and are grouped by category: buildings, infrastructure and special works.v The task group continues to work on developing other documents that will focus on the detailed practical application of some of the sustainability models described in this document.

Towards a rational understanding of shear in beams and slabs

Towards a rational understanding of shear in beams and slabs
Title Towards a rational understanding of shear in beams and slabs PDF eBook
Author fib Fédération internationale du béton
Publisher FIB - Féd. Int. du Béton
Pages 354
Release 2018-05-01
Genre Technology & Engineering
ISBN 2883941254

Download Towards a rational understanding of shear in beams and slabs Book in PDF, Epub and Kindle

Reliable performance of beams and slabs in shear is essential for the safety and also for the serviceability of reinforced concrete structures. A possible failure in shear is usually a brittle failure, which underlines the importance of the correct specification of the load carrying capacity in shear. The knowledge of performance in shear is steadily developing and it is now obvious that older structures were not always designed in accordance with contemporary requirements. The increasing load – mainly on bridges – requires the assessment of existing structures, often followed by their strengthening. An appropriate understanding of actual performance of concrete structures in shear is therefore of primary interest. The workshop which was held in Zürich in 2016 brought together a significant number of outstanding specialists working in the field of shear design, who had a chance to exchange their opinions and proposals for improving the current knowledge of shear behaviour in beams and slabs. The specialists came from different parts of the world, which made the workshop general and representative. The workshop was organised by fib Working Party 2.2.1 “Shear in Beams” (convened by O. Bayrak), which is a part of fib Commission 2 "Analysis and Design". Individual contributions mainly address shear in beams with low transversal reinforcement. It is crucial because many existing structures lack such reinforcement. Different theories, e.g. Critical Shear Crack Theory (CSCT), Modified Compression Field Theory (MCFT), Multi-Action Shear Model (MASM), etc. were presented and compared with procedures used in selected national codes or in the fib Model Code 2010. The models for shear design were often based to a great extent on empirical experience. The refined presented models tend to take into account the physical mechanisms in structures more effectively. A brittle behaviour in shear requires not only to check the equilibrium and failure load, but also to follow the progress of failure, including the crack development and propagation, stress redistribution, etc. The significance of the size effect – which causes the nominal strength of a large structure to be smaller than that of a small structure – was pointed out. Nowadays, the fibre reinforcement is used more than before since it allows significant labour costs savings in the construction industry. The contribution of fibres is suitable for shear transfer. It is very convenient that not only ordinary fibre reinforced elements were addressed but also the UHPFRC beams. The production of this new material is indeed growing, while the development of design recommendations has not been sufficiently fast. Fatigue resistance of structures with low shear reinforcement is also an important issue, which was also addressed in this bulletin. It cannot be neglected in prestressed bridges, which are exposed to dynamic loads. A comprehensive understanding of the shear behaviour is necessary. Although many laboratory experiments are carried out, they are suitable only to a limited extent. New testing methods are being developed and show promising results, e.g. digital image correlation. An actual structure performance should rather be tested on a large scale, ideally on real structures under realistic loading conditions.ii The papers presented in the bulletin are a basis for the discussion in view of the development of updated design rules for the new fib Model Code (MC2020), which is currently under preparation. fib Bulletins like this one, dealing with shear, help to transfer knowledge from research to design practice. The authors are convinced that it will lead to better new structures design of as well as to savings and to a safety increase in older existing structures, whose future is often decided now.

Polymer-duct systems for internal bonded post-tensioning

Polymer-duct systems for internal bonded post-tensioning
Title Polymer-duct systems for internal bonded post-tensioning PDF eBook
Author fib Fédération internationale du béton
Publisher fib Fédération internationale du béton
Pages 183
Release 2014-12-01
Genre Technology & Engineering
ISBN 2883941157

Download Polymer-duct systems for internal bonded post-tensioning Book in PDF, Epub and Kindle

The purpose of this recommendation - fib Bulletin 75: Polymer-duct systems for internal bonded post-tensioning - is to update and amend fib Bulletin 7:Corrugated plastic ducts for internal bonded post-tensioning, a technical report published in 2000. fib Bulletin 75 is meant as a cornerstone for the technical approval of polymer (plastic) ducts for internal bonded post-tensioning and possibly for the test procedures of a future testing standard. The updated bulletin includes new information on the design and detailing of concrete structures containing tendons with polymer ducts. The recommendation provides detailed test specifications for polymer materials, duct components and duct systems. In addition, the report contains recommendations for approval testing and attestations of conformity for polymer-duct systems. Although the new generation of corrugated polymer ducts for bonded post-tensioning have now been around for approximately twenty years, products still differ in material properties, geometrical detail, installation procedures and on-site use. Unlike corrugated steel ducts or smooth polyethylene (PE) pipes, they have not yet become standardized. It is the opinion of fib Task Group 9.16 and Commission 9 that these plastic ducts should, therefore, still be subjected to a systems approval process. This recommendation offers information acquired from twenty years of experience as well as new specifications that will, hopefully, lead to the standardization of polymer-duct systems.

Durability of Post-tensioning Tendons

Durability of Post-tensioning Tendons
Title Durability of Post-tensioning Tendons PDF eBook
Author fib Fédération internationale du béton
Publisher fib Fédération internationale du béton
Pages 84
Release 2006
Genre Technology & Engineering
ISBN 9782883940734

Download Durability of Post-tensioning Tendons Book in PDF, Epub and Kindle

The durability of post-tensioning tendons depends undoubtedly on the durability of the materials used, but there are design concept specifics which are also of major importance: the post-tensioning layout and layers of protection such as concrete cover and selected materials in view of the aggressivity of the environment for instance. It is well known that sustainability principles guide the Engineer from the very beginning, at the project conception, during construction and the service life of a structure. Decisions made during conceptual and design stage have the largest influence on the durability and sustainability of post-tensioning tendons. fibBulletin 33 addresses the specifics for prestressed concrete structures: the durability of post-tensioning tendons. It should be noted that it does not repeat topics that have been addressed in other fib bulletins and which is common for both reinforced concrete and prestressed concrete structures. Pre-tensioning, which is used extensively in the precast industry, is not considered here, although conclusions and recommendations herein may, in many cases, also be applicable. This recommendation was prepared by Working Party 5.4.2, Durability specifics for prestressed concrete structures, in cooperation with fib Commission 9,Reinforcing and prestressing materials and systems. A preliminary version of this recommendation served as the basic document for the second workshop on "Durability of post-tensioning tendons", held on 11-12 October 2004 in Zurich. This workshop was a follow-up to the first workshop held in Ghent in 2001. Bulletin 33 includes revisions corresponding to the agreed results of the Zurich workshop.

Model Code 2010 - Final draft

Model Code 2010 - Final draft
Title Model Code 2010 - Final draft PDF eBook
Author fib Fédération internationale du béton
Publisher fib Fédération internationale du béton
Pages 357
Release 2012-01-01
Genre Technology & Engineering
ISBN 288394105X

Download Model Code 2010 - Final draft Book in PDF, Epub and Kindle

The objectives of MC2010 are to (a) serve as a basis for future codes for concrete structures, and (b) present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. MC2010 includes the whole life cycle of a concrete structure, from design and construction to conservation (assessment, maintenance, strengthening) and dismantlement, in one code for buildings, bridges and other civil engineering structures. Design is largely based on performance requirements. The chapter on materials is extended with new types of concrete and reinforcement (such as fibres and non-metallic reinforcements). The fib Model Code 2010 also gives corresponding explanations in a separate column of the document. Additionally, MC2010 is supported by background documents that have already been (or will soon be) published in fib bulletins and journal articles. MC2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement.

Structural Concrete, Volume 3

Structural Concrete, Volume 3
Title Structural Concrete, Volume 3 PDF eBook
Author fib Fédération internationale du béton
Publisher fib Fédération internationale du béton
Pages 391
Release 2010
Genre Technology & Engineering
ISBN 2883940932

Download Structural Concrete, Volume 3 Book in PDF, Epub and Kindle

The second edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) tofib Model Code 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the Textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated Textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the Textbook.