Infinite Horizon Optimal Control

Infinite Horizon Optimal Control
Title Infinite Horizon Optimal Control PDF eBook
Author Dean A. Carlson
Publisher Springer Science & Business Media
Pages 270
Release 2013-06-29
Genre Business & Economics
ISBN 3662025299

Download Infinite Horizon Optimal Control Book in PDF, Epub and Kindle

This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general.

Stochastic Optimal Control

Stochastic Optimal Control
Title Stochastic Optimal Control PDF eBook
Author Dimitri P. Bertsekas
Publisher
Pages 323
Release 1961
Genre Dynamic programming
ISBN 9780120932603

Download Stochastic Optimal Control Book in PDF, Epub and Kindle

Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model

Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model
Title Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model PDF eBook
Author Alexander J. Zaslavski
Publisher Springer Nature
Pages 354
Release 2021-08-07
Genre Mathematics
ISBN 9811622523

Download Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model Book in PDF, Epub and Kindle

This book is devoted to the study of classes of optimal control problems arising in economic growth theory, related to the Robinson–Solow–Srinivasan (RSS) model. The model was introduced in the 1960s by economists Joan Robinson, Robert Solow, and Thirukodikaval Nilakanta Srinivasan and was further studied by Robinson, Nobuo Okishio, and Joseph Stiglitz. Since then, the study of the RSS model has become an important element of economic dynamics. In this book, two large general classes of optimal control problems, both of them containing the RSS model as a particular case, are presented for study. For these two classes, a turnpike theory is developed and the existence of solutions to the corresponding infinite horizon optimal control problems is established. The book contains 9 chapters. Chapter 1 discusses turnpike properties for some optimal control problems that are known in the literature, including problems corresponding to the RSS model. The first class of optimal control problems is studied in Chaps. 2–6. In Chap. 2, infinite horizon optimal control problems with nonautonomous optimality criteria are considered. The utility functions, which determine the optimality criterion, are nonconcave. This class of models contains the RSS model as a particular case. The stability of the turnpike phenomenon of the one-dimensional nonautonomous concave RSS model is analyzed in Chap. 3. The following chapter takes up the study of a class of autonomous nonconcave optimal control problems, a subclass of problems considered in Chap. 2. The equivalence of the turnpike property and the asymptotic turnpike property, as well as the stability of the turnpike phenomenon, is established. Turnpike conditions and the stability of the turnpike phenomenon for nonautonomous problems are examined in Chap. 5, with Chap. 6 devoted to the study of the turnpike properties for the one-dimensional nonautonomous nonconcave RSS model. The utility functions, which determine the optimality criterion, are nonconcave. The class of RSS models is identified with a complete metric space of utility functions. Using the Baire category approach, the turnpike phenomenon is shown to hold for most of the models. Chapter 7 begins the study of the second large class of autonomous optimal control problems, and turnpike conditions are established. The stability of the turnpike phenomenon for this class of problems is investigated further in Chaps. 8 and 9.

Discrete-Time Optimal Control and Games on Large Intervals

Discrete-Time Optimal Control and Games on Large Intervals
Title Discrete-Time Optimal Control and Games on Large Intervals PDF eBook
Author Alexander J. Zaslavski
Publisher Springer
Pages 402
Release 2017-04-03
Genre Mathematics
ISBN 3319529323

Download Discrete-Time Optimal Control and Games on Large Intervals Book in PDF, Epub and Kindle

Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discrete-time analogs of Bolza problems in calculus of variations are studied. The structures of approximate solutions of two-player zero-sum games are analyzed through standard convexity-concavity assumptions. Finally, turnpike properties for approximate solutions in a class of nonautonomic dynamic discrete-time games with convexity-concavity assumptions are examined.

Optimal Control Problems Arising in Mathematical Economics

Optimal Control Problems Arising in Mathematical Economics
Title Optimal Control Problems Arising in Mathematical Economics PDF eBook
Author Alexander J. Zaslavski
Publisher Springer Nature
Pages 387
Release 2022-06-28
Genre Mathematics
ISBN 981169298X

Download Optimal Control Problems Arising in Mathematical Economics Book in PDF, Epub and Kindle

This book is devoted to the study of two large classes of discrete-time optimal control problems arising in mathematical economics. Nonautonomous optimal control problems of the first class are determined by a sequence of objective functions and sequence of constraint maps. They correspond to a general model of economic growth. We are interested in turnpike properties of approximate solutions and in the stability of the turnpike phenomenon under small perturbations of objective functions and constraint maps. The second class of autonomous optimal control problems corresponds to another general class of models of economic dynamics which includes the Robinson–Solow–Srinivasan model as a particular case. In Chap. 1 we discuss turnpike properties for a large class of discrete-time optimal control problems studied in the literature and for the Robinson–Solow–Srinivasan model. In Chap. 2 we introduce the first class of optimal control problems and study its turnpike property. This class of problems is also discussed in Chaps. 3–6. In Chap. 3 we study the stability of the turnpike phenomenon under small perturbations of the objective functions. Analogous results for problems with discounting are considered in Chap. 4. In Chap. 5 we study the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. Analogous results for problems with discounting are established in Chap. 6. The results of Chaps. 5 and 6 are new. The second class of problems is studied in Chaps. 7–9. In Chap. 7 we study the turnpike properties. The stability of the turnpike phenomenon under small perturbations of the objective functions is established in Chap. 8. In Chap. 9 we establish the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. The results of Chaps. 8 and 9 are new. In Chap. 10 we study optimal control problems related to a model of knowledge-based endogenous economic growth and show the existence of trajectories of unbounded economic growth and provide estimates for the growth rate.

Infinite-Horizon Optimal Control in the Discrete-Time Framework

Infinite-Horizon Optimal Control in the Discrete-Time Framework
Title Infinite-Horizon Optimal Control in the Discrete-Time Framework PDF eBook
Author Joël Blot
Publisher Springer Science & Business Media
Pages 130
Release 2013-11-08
Genre Mathematics
ISBN 1461490383

Download Infinite-Horizon Optimal Control in the Discrete-Time Framework Book in PDF, Epub and Kindle

​​​​In this book the authors take a rigorous look at the infinite-horizon discrete-time optimal control theory from the viewpoint of Pontryagin’s principles. Several Pontryagin principles are described which govern systems and various criteria which define the notions of optimality, along with a detailed analysis of how each Pontryagin principle relate to each other. The Pontryagin principle is examined in a stochastic setting and results are given which generalize Pontryagin’s principles to multi-criteria problems. ​Infinite-Horizon Optimal Control in the Discrete-Time Framework is aimed toward researchers and PhD students in various scientific fields such as mathematics, applied mathematics, economics, management, sustainable development (such as, of fisheries and of forests), and Bio-medical sciences who are drawn to infinite-horizon discrete-time optimal control problems.

Turnpike Theory for the Robinson–Solow–Srinivasan Model

Turnpike Theory for the Robinson–Solow–Srinivasan Model
Title Turnpike Theory for the Robinson–Solow–Srinivasan Model PDF eBook
Author Alexander J. Zaslavski
Publisher Springer Nature
Pages 448
Release 2021-01-04
Genre Mathematics
ISBN 3030603075

Download Turnpike Theory for the Robinson–Solow–Srinivasan Model Book in PDF, Epub and Kindle

This book is devoted to the study of a class of optimal control problems arising in mathematical economics, related to the Robinson–Solow–Srinivasan (RSS) model. It will be useful for researches interested in the turnpike theory, infinite horizon optimal control and their applications, and mathematical economists. The RSS is a well-known model of economic dynamics that was introduced in the 1960s and as many other models of economic dynamics, the RSS model is determined by an objective function (a utility function) and a set-valued mapping (a technology map). The set-valued map generates a dynamical system whose trajectories are under consideration and the objective function determines an optimality criterion. The goal is to find optimal trajectories of the dynamical system, using the optimality criterion. Chapter 1 discusses turnpike properties for some classes of discrete time optimal control problems. Chapter 2 present the description of the RSS model and discuss its basic properties. Infinite horizon optimal control problems, related to the RSS model are studied in Chapter 3. Turnpike properties for the RSS model are analyzed in Chapter 4. Chapter 5 studies infinite horizon optimal control problems related to the RSS model with a nonconcave utility function. Chapter 6 focuses on infinite horizon optimal control problems with nonautonomous optimality criterions. Chapter 7 contains turnpike results for a class of discrete-time optimal control problems. Chapter 8 discusses the RSS model and compares different optimality criterions. Chapter 9 is devoted to the study of the turnpike properties for the RSS model. In Chapter 10 the one-dimensional autonomous RSS model is considered and the continuous time RSS model is studied in Chapter 11.