Infinite Groups: Geometric, Combinatorial and Dynamical Aspects
Title | Infinite Groups: Geometric, Combinatorial and Dynamical Aspects PDF eBook |
Author | Laurent Bartholdi |
Publisher | Springer Science & Business Media |
Pages | 419 |
Release | 2006-03-28 |
Genre | Mathematics |
ISBN | 3764374470 |
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
Infinite Groups: Geometric, Combinatorial and Dynamical Aspects
Title | Infinite Groups: Geometric, Combinatorial and Dynamical Aspects PDF eBook |
Author | Laurent Bartholdi |
Publisher | Birkhäuser |
Pages | 416 |
Release | 2009-09-03 |
Genre | Mathematics |
ISBN | 9783764390976 |
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
Infinite Groups
Title | Infinite Groups PDF eBook |
Author | Martyn R. Dixon |
Publisher | CRC Press |
Pages | 411 |
Release | 2022-12-30 |
Genre | Mathematics |
ISBN | 1000848310 |
In recent times, group theory has found wider applications in various fields of algebra and mathematics in general. But in order to apply this or that result, you need to know about it, and such results are often diffuse and difficult to locate, necessitating that readers construct an extended search through multiple monographs, articles, and papers. Such readers must wade through the morass of concepts and auxiliary statements that are needed to understand the desired results, while it is initially unclear which of them are really needed and which ones can be dispensed with. A further difficulty that one may encounter might be concerned with the form or language in which a given result is presented. For example, if someone knows the basics of group theory, but does not know the theory of representations, and a group theoretical result is formulated in the language of representation theory, then that person is faced with the problem of translating this result into the language with which they are familiar, etc. Infinite Groups: A Roadmap to Some Classical Areas seeks to overcome this challenge. The book covers a broad swath of the theory of infinite groups, without giving proofs, but with all the concepts and auxiliary results necessary for understanding such results. In other words, this book is an extended directory, or a guide, to some of the more established areas of infinite groups. Features An excellent resource for a subject formerly lacking an accessible and in-depth reference Suitable for graduate students, PhD students, and researchers working in group theory Introduces the reader to the most important methods, ideas, approaches, and constructions in infinite group theory.
Cellular Automata and Groups
Title | Cellular Automata and Groups PDF eBook |
Author | Tullio Ceccherini-Silberstein |
Publisher | Springer Nature |
Pages | 562 |
Release | 2024-02-16 |
Genre | Mathematics |
ISBN | 3031433289 |
This unique book provides a self-contained exposition of the theory of cellular automata on groups and explores its deep connections with recent developments in geometric and combinatorial group theory, amenability, symbolic dynamics, the algebraic theory of group rings, and other branches of mathematics and theoretical computer science. The topics treated include the Garden of Eden theorem for amenable groups, the Gromov–Weiss surjunctivity theorem, and the solution of the Kaplansky conjecture on the stable finiteness of group rings for sofic groups. Entirely self-contained and now in its second edition, the volume includes 10 appendices and more than 600 exercises, the solutions of which are presented in the companion book Exercises in Cellular Automata and Groups (2023) by the same authors. It will appeal to a large audience, including specialists and newcomers to the field.
Combinatorial Set Theory of C*-algebras
Title | Combinatorial Set Theory of C*-algebras PDF eBook |
Author | Ilijas Farah |
Publisher | Springer Nature |
Pages | 535 |
Release | 2019-12-24 |
Genre | Mathematics |
ISBN | 3030270939 |
This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.
Geometry, Rigidity, and Group Actions
Title | Geometry, Rigidity, and Group Actions PDF eBook |
Author | Benson Farb |
Publisher | University of Chicago Press |
Pages | 659 |
Release | 2011-04-15 |
Genre | Mathematics |
ISBN | 0226237907 |
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others. The papers in Geometry, Rigidity, and Group Actions explore the role of group actions and rigidity in several areas of mathematics, including ergodic theory, dynamics, geometry, topology, and the algebraic properties of representation varieties. In some cases, the dynamics of the possible group actions are the principal focus of inquiry. In other cases, the dynamics of group actions are a tool for proving theorems about algebra, geometry, or topology. This volume contains surveys of some of the main directions in the field, as well as research articles on topics of current interest.
Dynamical Systems and Group Actions
Title | Dynamical Systems and Group Actions PDF eBook |
Author | Lewis Bowen |
Publisher | American Mathematical Soc. |
Pages | 280 |
Release | 2012 |
Genre | Mathematics |
ISBN | 0821869221 |
This volume contains cutting-edge research from leading experts in ergodic theory, dynamical systems and group actions. A large part of the volume addresses various aspects of ergodic theory of general group actions including local entropy theory, universal minimal spaces, minimal models and rank one transformations. Other papers deal with interval exchange transformations, hyperbolic dynamics, transfer operators, amenable actions and group actions on graphs.