Infinite-Dimensional Representations of 2-Groups
Title | Infinite-Dimensional Representations of 2-Groups PDF eBook |
Author | John C. Baez |
Publisher | American Mathematical Soc. |
Pages | 133 |
Release | 2012 |
Genre | Mathematics |
ISBN | 0821872842 |
Just as groups can have representations on vector spaces, 2-groups have representations on 2-vector spaces, but Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. Therefore, Crane, Sheppeard, and Yetter introduced certain infinite-dimensional 2-vector spaces, called measurable categories, to study infinite-dimensional representations of certain Lie 2-groups, and German and North American mathematicians continue that work here. After introductory matters, they cover representations of 2-groups, and measurable categories, representations on measurable categories. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).
Representations of Algebraic Groups
Title | Representations of Algebraic Groups PDF eBook |
Author | Jens Carsten Jantzen |
Publisher | American Mathematical Soc. |
Pages | 594 |
Release | 2003 |
Genre | Mathematics |
ISBN | 082184377X |
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
Representations of the Infinite Symmetric Group
Title | Representations of the Infinite Symmetric Group PDF eBook |
Author | Alexei Borodin |
Publisher | Cambridge University Press |
Pages | 169 |
Release | 2017 |
Genre | Mathematics |
ISBN | 1107175550 |
An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.
Infinite Dimensional Groups with Applications
Title | Infinite Dimensional Groups with Applications PDF eBook |
Author | Victor Kac |
Publisher | Springer Science & Business Media |
Pages | 406 |
Release | 1985-10-14 |
Genre | Mathematics |
ISBN | 9780387962160 |
This volume records most of the talks given at the Conference on Infinite-dimensional Groups held at the Mathematical Sciences Research Institute at Berkeley, California, May 10-May 15, 1984, as a part of the special program on Kac-Moody Lie algebras. The purpose of the conference was to review recent developments of the theory of infinite-dimensional groups and its applications. The present collection concentrates on three very active, interrelated directions of the field: general Kac-Moody groups, gauge groups (especially loop groups) and diffeomorphism groups. I would like to express my thanks to the MSRI for sponsoring the meeting, to Ms. Faye Yeager for excellent typing, to the authors for their manuscripts, and to Springer-Verlag for publishing this volume. V. Kac INFINITE DIMENSIONAL GROUPS WITH APPLICATIONS CONTENTS The Lie Group Structure of M. Adams. T. Ratiu 1 Diffeomorphism Groups and & R. Schmid Invertible Fourier Integral Operators with Applications On Landau-Lifshitz Equation and E. Date 71 Infinite Dimensional Groups Flat Manifolds and Infinite D. S. Freed 83 Dimensional Kahler Geometry Positive-Energy Representations R. Goodman 125 of the Group of Diffeomorphisms of the Circle Instantons and Harmonic Maps M. A. Guest 137 A Coxeter Group Approach to Z. Haddad 157 Schubert Varieties Constructing Groups Associated to V. G. Kac 167 Infinite-Dimensional Lie Algebras I. Kaplansky 217 Harish-Chandra Modules Over the Virasoro Algebra & L. J. Santharoubane 233 Rational Homotopy Theory of Flag S.
Infinite-dimensional Representations of 2-groups
Title | Infinite-dimensional Representations of 2-groups PDF eBook |
Author | |
Publisher | |
Pages | 120 |
Release | 2012 |
Genre | Categories |
ISBN | 9780821891162 |
A `2-group' is a category equipped with a multiplication satisfying laws like those of a group. Just as groups have representations on vector spaces, 2-groups have representations on `2-vector spaces', which are categories analogous to vector spaces. Unfortunately, Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. For this reason, Crane, Sheppeard and Yetter introduced certain infinite-dimensional 2-vector spaces called `measurable categories' (since they are closely related to measurable fields of Hilbert spaces), and used these to study infinite-dimensional representations of certain Lie 2-groups. Here we continue this work. We begin with a detailed study of measurable categories. Then we give a geometrical description of the measurable representations, intertwiners and 2-intertwiners for any skeletal measurable 2-group. We study tensor products and direct sums for representations, and various concepts of subrepresentation. We describe direct sums of intertwiners, and sub-intertwiners--features not seen in ordinary group representation theory. We study irreducible and indecomposable representations and intertwiners. We also study `irretractable' representations--another feature not seen in ordinary group representation theory. Finally, we argue that measurable categories equipped with some extra structure deserve to be considered `separable 2-Hilbert spaces', and compare this idea to a tentative definition of 2-Hilbert spaces as representation categories of commutative von Neumann algebras.
A Journey Through Representation Theory
Title | A Journey Through Representation Theory PDF eBook |
Author | Caroline Gruson |
Publisher | Springer |
Pages | 231 |
Release | 2018-10-23 |
Genre | Mathematics |
ISBN | 3319982710 |
This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field. The book begins with classical representation theory of finite groups over complex numbers and ends with results on representation theory of quivers. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras. The last chapter is devoted to some applications of quivers, including Harish-Chandra modules for SL(2). Ample examples are provided and some are revisited with a different approach when new methods are introduced, leading to deeper results. Exercises are spread throughout each chapter. Prerequisites include an advanced course in linear algebra that covers Jordan normal forms and tensor products as well as basic results on groups and rings.
A Course in Finite Group Representation Theory
Title | A Course in Finite Group Representation Theory PDF eBook |
Author | Peter Webb |
Publisher | Cambridge University Press |
Pages | 339 |
Release | 2016-08-19 |
Genre | Mathematics |
ISBN | 1107162394 |
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.