Representation and Inference for Natural Language
Title | Representation and Inference for Natural Language PDF eBook |
Author | Patrick Blackburn |
Publisher | Center for the Study of Language and Information Publica Tion |
Pages | 0 |
Release | 2005 |
Genre | Computational linguistics |
ISBN | 9781575864969 |
How can computers distinguish the coherent from the unintelligible, recognize new information in a sentence, or draw inferences from a natural language passage? Computational semantics is an exciting new field that seeks answers to these questions, and this volume is the first textbook wholly devoted to this growing subdiscipline. The book explains the underlying theoretical issues and fundamental techniques for computing semantic representations for fragments of natural language. This volume will be an essential text for computer scientists, linguists, and anyone interested in the development of computational semantics.
Diagrammatic Representation and Inference
Title | Diagrammatic Representation and Inference PDF eBook |
Author | Amrita Basu |
Publisher | Springer Nature |
Pages | 570 |
Release | 2021-09-21 |
Genre | Computers |
ISBN | 3030860620 |
This book constitutes the refereed proceedings of the 12th International Conference on the Theory and Application of Diagrams, Diagrams 2021, held virtually in September 2021. The 16 full papers and 25 short papers presented together with 16 posters were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: design of concrete diagrams; theory of diagrams; diagrams and mathematics; diagrams and logic; new representation systems; analysis of diagrams; diagrams and computation; cognitive analysis; diagrams as structural tools; formal diagrams; and understanding thought processes. 10 chapters are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Diagrammatic Representation and Inference
Title | Diagrammatic Representation and Inference PDF eBook |
Author | Ahti-Veikko Pietarinen |
Publisher | Springer Nature |
Pages | 557 |
Release | 2020-08-17 |
Genre | Computers |
ISBN | 3030542491 |
This book constitutes the refereed proceedings of the 11th International Conference on the Theory and Application of Diagrams, Diagrams 2020, held in Tallinn, Estonia, in August 2020.* The 20 full papers and 16 short papers presented together with 18 posters were carefully reviewed and selected from 82 submissions. The papers are organized in the following topical sections: diagrams in mathematics; diagram design, principles, and classification; reasoning with diagrams; Euler and Venn diagrams; empirical studies and cognition; logic and diagrams; and posters. *The conference was held virtually due to the COVID-19 pandemic. The chapters ‘Modality and Uncertainty in Data Visualization: A Corpus Approach to the Use of Connecting Lines,’ ‘On Effects of Changing Multi-Attribute Table Design on Decision Making: An Eye Tracking Study,’ ‘Truth Graph: A Novel Method for Minimizing Boolean Algebra Expressions by Using Graphs,’ ‘The DNA Framework of Visualization’ and ‘Visualizing Curricula’ are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Pattern Theory
Title | Pattern Theory PDF eBook |
Author | Ulf Grenander |
Publisher | Oxford University Press |
Pages | 633 |
Release | 2007 |
Genre | Computers |
ISBN | 0198505701 |
Pattern Theory provides a comprehensive and accessible overview of the modern challenges in signal, data, and pattern analysis in speech recognition, computational linguistics, image analysis and computer vision. Aimed at graduate students in biomedical engineering, mathematics, computer science, and electrical engineering with a good background in mathematics and probability, the text includes numerous exercises and an extensive bibliography. Additional resources including extended proofs, selected solutions and examples are available on a companion website. The book commences with a short overview of pattern theory and the basics of statistics and estimation theory. Chapters 3-6 discuss the role of representation of patterns via condition structure. Chapters 7 and 8 examine the second central component of pattern theory: groups of geometric transformation applied to the representation of geometric objects. Chapter 9 moves into probabilistic structures in the continuum, studying random processes and random fields indexed over subsets of Rn. Chapters 10 and 11 continue with transformations and patterns indexed over the continuum. Chapters 12-14 extend from the pure representations of shapes to the Bayes estimation of shapes and their parametric representation. Chapters 15 and 16 study the estimation of infinite dimensional shape in the newly emergent field of Computational Anatomy. Finally, Chapters 17 and 18 look at inference, exploring random sampling approaches for estimation of model order and parametric representing of shapes.
Graphical Models, Exponential Families, and Variational Inference
Title | Graphical Models, Exponential Families, and Variational Inference PDF eBook |
Author | Martin J. Wainwright |
Publisher | Now Publishers Inc |
Pages | 324 |
Release | 2008 |
Genre | Computers |
ISBN | 1601981848 |
The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.
Diagrammatic Representation and Inference
Title | Diagrammatic Representation and Inference PDF eBook |
Author | Alan Blackwell |
Publisher | Springer Science & Business Media |
Pages | 469 |
Release | 2004-03-12 |
Genre | Art |
ISBN | 354021268X |
This book constitutes the refereed proceedings of the Third International Conference, Diagrams 2004, held in Cambridge, UK, in March 2004. The 18 revised full papers and 42 revised poster papers presented together with a survey article and the abstracts of 2 posters were carefully reviewed and selected from a total of 91 submissions. The papers are organized in topical sections on fundamental issues, logical aspects of diagrammatic representation and reasoning, computational aspects of diagrammatic representation and reasoning, cognitive aspects of diagrammatic representation and reasoning, visualizing information with diagrams, diagrams in human-computer interaction, and diagrams in software engineering.
Probabilistic Graphical Models
Title | Probabilistic Graphical Models PDF eBook |
Author | Daphne Koller |
Publisher | MIT Press |
Pages | 1270 |
Release | 2009-07-31 |
Genre | Computers |
ISBN | 0262258358 |
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.