Inequalities from Complex Analysis
Title | Inequalities from Complex Analysis PDF eBook |
Author | John P. D'Angelo |
Publisher | |
Pages | 288 |
Release | 2002 |
Genre | Functions of complex variables |
ISBN | 9780883850008 |
Inequalities from Complex Analysis is a careful, friendly exposition of some rather interesting mathematics. The author begins by defining the complex number field; he gives a novel presentation of some standard mathematical analysis in the early chapters. The development culminates with some results from recent research literature. The book provides complete yet comprehensible proofs as well as some surprising consequences of the results. One unifying theme is a complex variables analogue of Hilbert's seventeenth problem. Numerous examples, exercises and discussions of geometric reasoning aid the reader. The book is accessible to undergraduate mathematicians, as well as physicists and engineers.
Complex Analysis
Title | Complex Analysis PDF eBook |
Author | Prem K. Kythe |
Publisher | CRC Press |
Pages | 365 |
Release | 2016-04-19 |
Genre | Mathematics |
ISBN | 149871899X |
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis
Inverse Spectral Theory
Title | Inverse Spectral Theory PDF eBook |
Author | Jurgen Poschel |
Publisher | Academic Press |
Pages | 209 |
Release | 1987-03-16 |
Genre | Mathematics |
ISBN | 0080874495 |
Inverse Spectral Theory
A Course in Complex Analysis
Title | A Course in Complex Analysis PDF eBook |
Author | Wolfgang Fischer |
Publisher | Springer Science & Business Media |
Pages | 280 |
Release | 2011-10-21 |
Genre | Mathematics |
ISBN | 3834886610 |
This carefully written textbook is an introduction to the beautiful concepts and results of complex analysis. It is intended for international bachelor and master programmes in Germany and throughout Europe; in the Anglo-American system of university education the content corresponds to a beginning graduate course. The book presents the fundamental results and methods of complex analysis and applies them to a study of elementary and non-elementary functions (elliptic functions, Gamma- and Zeta function including a proof of the prime number theorem ...) and – a new feature in this context! – to exhibiting basic facts in the theory of several complex variables. Part of the book is a translation of the authors’ German text “Einführung in die komplexe Analysis”; some material was added from the by now almost “classical” text “Funktionentheorie” written by the authors, and a few paragraphs were newly written for special use in a master’s programme.
Complex Analysis in one Variable
Title | Complex Analysis in one Variable PDF eBook |
Author | NARASIMHAN |
Publisher | Springer Science & Business Media |
Pages | 282 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1475711069 |
This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.
Complex Analysis through Examples and Exercises
Title | Complex Analysis through Examples and Exercises PDF eBook |
Author | E. Pap |
Publisher | Springer Science & Business Media |
Pages | 344 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 9401711062 |
The book Complex Analysis through Examples and Exercises has come out from the lectures and exercises that the author held mostly for mathematician and physists . The book is an attempt to present the rat her involved subject of complex analysis through an active approach by the reader. Thus this book is a complex combination of theory and examples. Complex analysis is involved in all branches of mathematics. It often happens that the complex analysis is the shortest path for solving a problem in real circum stances. We are using the (Cauchy) integral approach and the (Weierstrass) power se ries approach . In the theory of complex analysis, on the hand one has an interplay of several mathematical disciplines, while on the other various methods, tools, and approaches. In view of that, the exposition of new notions and methods in our book is taken step by step. A minimal amount of expository theory is included at the beinning of each section, the Preliminaries, with maximum effort placed on weil selected examples and exercises capturing the essence of the material. Actually, I have divided the problems into two classes called Examples and Exercises (some of them often also contain proofs of the statements from the Preliminaries). The examples contain complete solutions and serve as a model for solving similar problems given in the exercises. The readers are left to find the solution in the exercisesj the answers, and, occasionally, some hints, are still given.
Complex Analysis
Title | Complex Analysis PDF eBook |
Author | Elias M. Stein |
Publisher | Princeton University Press |
Pages | 398 |
Release | 2010-04-22 |
Genre | Mathematics |
ISBN | 1400831156 |
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.