Inducing Event Schemas and Their Participants from Unlabeled Text

Inducing Event Schemas and Their Participants from Unlabeled Text
Title Inducing Event Schemas and Their Participants from Unlabeled Text PDF eBook
Author Nathanael William Chambers
Publisher Stanford University
Pages 159
Release 2011
Genre
ISBN

Download Inducing Event Schemas and Their Participants from Unlabeled Text Book in PDF, Epub and Kindle

The majority of information on the Internet is expressed in written text. Understanding and extracting this information is crucial to building intelligent systems that can organize this knowledge, but most algorithms focus on learning atomic facts and relations. For instance, we can reliably extract facts like "Stanford is a University" and "Professors teach Science" by observing redundant word patterns across a corpus. However, these facts do not capture richer knowledge like the way detonating a bomb is related to destroying a building, or that the perpetrator who was convicted must have been arrested. A structured model of these events and entities is needed to understand language across many genres, including news, blogs, and even social media. This dissertation describes a new approach to knowledge acquisition and extraction that learns rich structures of events (e.g., plant, detonate, destroy) and participants (e.g., suspect, target, victim) over a large corpus of news articles, beginning from scratch and without human involvement. As opposed to early event models in Natural Language Processing (NLP) such as scripts and frames, modern statistical approaches and advances in NLP now enable new representations and large-scale learning over many domains. This dissertation begins by describing a new model of events and entities called Narrative Event Schemas. A Narrative Event Schema is a collection of events that occur together in the real world, linked by the typical entities involved. I describe the representation itself, followed by a statistical learning algorithm that observes chains of entities repeatedly connecting the same sets of events within documents. The learning process extracts thousands of verbs within schemas from 14 years of newspaper data. I present novel contributions in the field of temporal ordering to build classifiers that order the events and infer likely schema orderings. I then present several new evaluations for the extracted knowledge. Finally, I apply Narrative Event Schemas to the field of Information Extraction, learning templates of events with sets of semantic roles. Most Information Extraction approaches assume foreknowledge of the domain's templates, but I instead start from scratch and learn schemas as templates, and then extract the entities from text as in a standard extraction task. My algorithm is the first to learn templates without human guidance, and its results approach those of supervised algorithms.

Human Interface and the Management of Information: Supporting Learning, Decision-Making and Collaboration

Human Interface and the Management of Information: Supporting Learning, Decision-Making and Collaboration
Title Human Interface and the Management of Information: Supporting Learning, Decision-Making and Collaboration PDF eBook
Author Sakae Yamamoto
Publisher Springer
Pages 649
Release 2017-07-03
Genre Computers
ISBN 331958524X

Download Human Interface and the Management of Information: Supporting Learning, Decision-Making and Collaboration Book in PDF, Epub and Kindle

The two-volume set LNCS 10273 and 10274 constitutes the refereed proceedings of the thematic track on Human Interface and the Management of Information, held as part of the 19th HCI International 2017, in Vancouver, BC, Canada, in July 2017. HCII 2017 received a total of 4340 submissions, of which 1228 papers were accepted for publication after a careful reviewing process. The 102 papers presented in these volumes were organized in topical sections as follows: Part I: Visualization Methods and Tools; Information and Interaction Design; Knowledge and Service Management; Multimodal and Embodied Interaction. Part II: Information and Learning; Information in Virtual and Augmented Reality; Recommender and Decision Support Systems; Intelligent Systems; Supporting Collaboration and User Communities; Case Studies.

Computational Humanities

Computational Humanities
Title Computational Humanities PDF eBook
Author Jessica Marie Johnson
Publisher U of Minnesota Press
Pages 335
Release 2024-09-24
Genre Social Science
ISBN 1452971765

Download Computational Humanities Book in PDF, Epub and Kindle

The first book to intervene in debates on computation in the digital humanities Bringing together leading experts from across North America and Europe, Computational Humanities redirects debates around computation and humanities digital scholarship from dualistic arguments to nuanced discourse centered around theories of knowledge and power. This volume is organized around four questions: Why or why not pursue computational humanities? How do we engage in computational humanities? What can we study using these methods? Who are the stakeholders? Recent advances in technologies for image and sound processing have expanded computational approaches to cultural forms beyond text, and new forms of data, from listservs and code repositories to tweets and other social media content, have enlivened debates about what counts as digital humanities scholarship. Providing case studies of collaborations between humanities-centered and computation-centered researchers, this volume highlights both opportunities and frictions, showing that data and computation are as much about power, prestige, and precarity as they are about p-values. Contributors: Mark Algee-Hewitt, Stanford U; David Bamman, U of California, Berkeley; Kaspar Beelen, U of London; Peter Bell, Philipps U of Marburg; Tobias Blanke, U of Amsterdam; Julia Damerow, Arizona State U; Quinn Dombrowski, Stanford U; Crystal Nicole Eddins, U of Pittsburgh; Abraham Gibson, U of Texas at San Antonio; Tassie Gniady; Crystal Hall, Bowdoin College; Vanessa M. Holden, U of Kentucky; David Kloster, Indiana U; Manfred D. Laubichler, Arizona State U; Katherine McDonough, Lancaster U; Barbara McGillivray, King’s College London; Megan Meredith-Lobay, Simon Fraser U; Federico Nanni, Alan Turing Institute; Fabian Offert, U of California, Santa Barbara; Hannah Ringler, Illinois Institute of Technology; Roopika Risam, Dartmouth College; Joshua D. Rothman, U of Alabama; Benjamin M. Schmidt; Lisa Tagliaferri, Rutgers U; Jeffrey Tharsen, U of Chicago; Marieke van Erp, Royal Netherlands Academy of Arts and Sciences; Lee Zickel, Case Western Reserve U.

Computational Modeling of Narrative

Computational Modeling of Narrative
Title Computational Modeling of Narrative PDF eBook
Author Inderjeet Mani
Publisher Morgan & Claypool Publishers
Pages 145
Release 2013
Genre Computers
ISBN 1608459810

Download Computational Modeling of Narrative Book in PDF, Epub and Kindle

The field of narrative (or story) understanding and generation is one of the oldest in natural language processing (NLP) and artificial intelligence (AI), which is hardly surprising, since storytelling is such a fundamental and familiar intellectual and social activity. In recent years, the demands of interactive entertainment and interest in the creation of engaging narratives with life-like characters have provided a fresh impetus to this field. This book provides an overview of the principal problems, approaches, and challenges faced today in modeling the narrative structure of stories. The book introduces classical narratological concepts from literary theory and their mapping to computational approaches. It demonstrates how research in AI and NLP has modeled character goals, causality, and time using formalisms from planning, case-based reasoning, and temporal reasoning, and discusses fundamental limitations in such approaches. It proposes new representations for embedded narratives and fictional entities, for assessing the pace of a narrative, and offers an empirical theory of audience response. These notions are incorporated into an annotation scheme called NarrativeML. The book identifies key issues that need to be addressed, including annotation methods for long literary narratives, the representation of modality and habituality, and characterizing the goals of narrators. It also suggests a future characterized by advanced text mining of narrative structure from large-scale corpora and the development of a variety of useful authoring aids. This is the first book to provide a systematic foundation that integrates together narratology, AI, and computational linguistics. It can serve as a narratology primer for computer scientists and an elucidation of computational narratology for literary theorists. It is written in a highly accessible manner and is intended for use by a broad scientific audience that includes linguists (computational and formal semanticists), AI researchers, cognitive scientists, computer scientists, game developers, and narrative theorists.

Social Science Research

Social Science Research
Title Social Science Research PDF eBook
Author Anol Bhattacherjee
Publisher CreateSpace
Pages 156
Release 2012-04-01
Genre Science
ISBN 9781475146127

Download Social Science Research Book in PDF, Epub and Kindle

This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.

How People Learn II

How People Learn II
Title How People Learn II PDF eBook
Author National Academies of Sciences, Engineering, and Medicine
Publisher National Academies Press
Pages 347
Release 2018-09-27
Genre Education
ISBN 0309459672

Download How People Learn II Book in PDF, Epub and Kindle

There are many reasons to be curious about the way people learn, and the past several decades have seen an explosion of research that has important implications for individual learning, schooling, workforce training, and policy. In 2000, How People Learn: Brain, Mind, Experience, and School: Expanded Edition was published and its influence has been wide and deep. The report summarized insights on the nature of learning in school-aged children; described principles for the design of effective learning environments; and provided examples of how that could be implemented in the classroom. Since then, researchers have continued to investigate the nature of learning and have generated new findings related to the neurological processes involved in learning, individual and cultural variability related to learning, and educational technologies. In addition to expanding scientific understanding of the mechanisms of learning and how the brain adapts throughout the lifespan, there have been important discoveries about influences on learning, particularly sociocultural factors and the structure of learning environments. How People Learn II: Learners, Contexts, and Cultures provides a much-needed update incorporating insights gained from this research over the past decade. The book expands on the foundation laid out in the 2000 report and takes an in-depth look at the constellation of influences that affect individual learning. How People Learn II will become an indispensable resource to understand learning throughout the lifespan for educators of students and adults.

Knowledge Structures

Knowledge Structures
Title Knowledge Structures PDF eBook
Author James A. Galambos
Publisher Psychology Press
Pages 310
Release 2013-08-21
Genre Psychology
ISBN 1134932057

Download Knowledge Structures Book in PDF, Epub and Kindle

First Published in 1986. This book marks a watershed in cognitive science activity at Yale University. Over the past decade, the cognitive science orientation has become more and more integrated into the mainstream of cognitive psychology, and artificial intelligence workers now feel comfortable thinking about psychological experimentation. This book collects in one place the research work which concentrates on covering topics in the representation, processing, and recall of meaningful verbal .materials. Several of the chapters are first reports of research; others are specially prepared reviews and elaborations of research reported previously. Here it is all together: Studies of scripts, plans, and higher-level knowledge structures; analyses of knowledge structure activation, of autobiographical memory, of the phenomenon of reminding, of the summarization of text, of explanations for events, and more.