Introduction to the Theory of Differential Inclusions

Introduction to the Theory of Differential Inclusions
Title Introduction to the Theory of Differential Inclusions PDF eBook
Author Georgi V. Smirnov
Publisher American Mathematical Society
Pages 226
Release 2022-02-22
Genre Mathematics
ISBN 1470468549

Download Introduction to the Theory of Differential Inclusions Book in PDF, Epub and Kindle

A differential inclusion is a relation of the form $dot x in F(x)$, where $F$ is a set-valued map associating any point $x in R^n$ with a set $F(x) subset R^n$. As such, the notion of a differential inclusion generalizes the notion of an ordinary differential equation of the form $dot x = f(x)$. Therefore, all problems usually studied in the theory of ordinary differential equations (existence and continuation of solutions, dependence on initial conditions and parameters, etc.) can be studied for differential inclusions as well. Since a differential inclusion usually has many solutions starting at a given point, new types of problems arise, such as investigation of topological properties of the set of solutions, selection of solutions with given properties, and many others. Differential inclusions play an important role as a tool in the study of various dynamical processes described by equations with a discontinuous or multivalued right-hand side, occurring, in particular, in the study of dynamics of economical, social, and biological macrosystems. They also are very useful in proving existence theorems in control theory. This text provides an introductory treatment to the theory of differential inclusions. The reader is only required to know ordinary differential equations, theory of functions, and functional analysis on the elementary level. Chapter 1 contains a brief introduction to convex analysis. Chapter 2 considers set-valued maps. Chapter 3 is devoted to the Mordukhovich version of nonsmooth analysis. Chapter 4 contains the main existence theorems and gives an idea of the approximation techniques used throughout the text. Chapter 5 is devoted to the viability problem, i.e., the problem of selection of a solution to a differential inclusion that is contained in a given set. Chapter 6 considers the controllability problem. Chapter 7 discusses extremal problems for differential inclusions. Chapter 8 presents stability theory, and Chapter 9 deals with the stabilization problem.

(In-)Stability of Differential Inclusions

(In-)Stability of Differential Inclusions
Title (In-)Stability of Differential Inclusions PDF eBook
Author Philipp Braun
Publisher Springer Nature
Pages 123
Release 2021-07-12
Genre Mathematics
ISBN 303076317X

Download (In-)Stability of Differential Inclusions Book in PDF, Epub and Kindle

Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.

Stability of Motion

Stability of Motion
Title Stability of Motion PDF eBook
Author A. M. Liapunov
Publisher Elsevier
Pages 216
Release 2016-06-03
Genre Technology & Engineering
ISBN 1483266761

Download Stability of Motion Book in PDF, Epub and Kindle

Mathematics in Science and Engineering, Volume 30: Stability of Motion deals with the problem of stability of motion. This volume investigates the problem of stability of the unperturbed motion in cases such as the system of differential equations for the perturbed motion is autonomie and the characteristic equation of the linear system that gives the first approximation has a double zero root. When the order of the system is larger than two (n > 2), all the remaining roots have negative real parts. The double root corresponds to a multiple elementary divisor of the characteristic matrix. This book is a good reference for mathematicians, students, and specialists conducting work on the stability of motion.

Impulsive Differential Inclusions

Impulsive Differential Inclusions
Title Impulsive Differential Inclusions PDF eBook
Author John R. Graef
Publisher Walter de Gruyter
Pages 412
Release 2013-07-31
Genre Mathematics
ISBN 3110295318

Download Impulsive Differential Inclusions Book in PDF, Epub and Kindle

Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.

Differential Inclusions

Differential Inclusions
Title Differential Inclusions PDF eBook
Author J.-P. Aubin
Publisher Springer Science & Business Media
Pages 353
Release 2012-12-06
Genre Mathematics
ISBN 3642695124

Download Differential Inclusions Book in PDF, Epub and Kindle

A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differen tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map. This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable

Stochastic Stability of Differential Equations

Stochastic Stability of Differential Equations
Title Stochastic Stability of Differential Equations PDF eBook
Author Rafail Khasminskii
Publisher Springer Science & Business Media
Pages 353
Release 2011-09-20
Genre Mathematics
ISBN 3642232809

Download Stochastic Stability of Differential Equations Book in PDF, Epub and Kindle

Since the publication of the first edition of the present volume in 1980, the stochastic stability of differential equations has become a very popular subject of research in mathematics and engineering. To date exact formulas for the Lyapunov exponent, the criteria for the moment and almost sure stability, and for the existence of stationary and periodic solutions of stochastic differential equations have been widely used in the literature. In this updated volume readers will find important new results on the moment Lyapunov exponent, stability index and some other fields, obtained after publication of the first edition, and a significantly expanded bibliography. This volume provides a solid foundation for students in graduate courses in mathematics and its applications. It is also useful for those researchers who would like to learn more about this subject, to start their research in this area or to study the properties of concrete mechanical systems subjected to random perturbations.

Dynamics And Control Of Hybrid Mechanical Systems

Dynamics And Control Of Hybrid Mechanical Systems
Title Dynamics And Control Of Hybrid Mechanical Systems PDF eBook
Author Gennady A Leonov
Publisher World Scientific
Pages 261
Release 2010-01-13
Genre Technology & Engineering
ISBN 9814467014

Download Dynamics And Control Of Hybrid Mechanical Systems Book in PDF, Epub and Kindle

The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and control, but also a number of experimental realizations. Special attention is given to synchronization — a universal phenomenon in nonlinear science that gained tremendous significance since its discovery by Huygens in the 17th century. Possible applications of the results introduced in the book include control of mobile robots, control of CD/DVD players, flexible manufacturing lines, and complex networks of interacting agents.The book is based on the material presented at a similarly entitled minisymposium at the 6th European Nonlinear Dynamics Conference held in St Petersburg in 2008. It is unique in that it contains results of several international and interdisciplinary collaborations in the field, and reflects state-of-the-art technological development in the area of hybrid mechanical systems at the forefront of the 21st century.