Improving Crop Resistance to Abiotic Stress
Title | Improving Crop Resistance to Abiotic Stress PDF eBook |
Author | Narendra Tuteja |
Publisher | Wiley-Blackwell |
Pages | 500 |
Release | 2012-03-30 |
Genre | Science |
ISBN | 9783527632930 |
Abiotic stress, such as high salinity and drought is the most common challenge for sustainable food production in large parts of the world, in particular in emerging countries. The ongoing and expected global climate change will further increase these challenges in many areas, making improved stress resistance of crops a key topic for the 21st Century. Proteomics, genomics and metabolomics are methods allowing for the rapid and complete analysis of the complete physiology of crop plants. This knowledge in turn, is the prerequisite for improvements of crop resistance against abiotic stress through genetic engineering or traditional breeding methods. Improving Crop Resistance to Abiotic Stress is a double-volume, up-to-date overview of current progress in improving crop quality and quantity using modern methods such as proteomics, genomics and metabolomics. With this particular emphasis on genetic engineering, this text focuses on crop improvement under adverse conditions, paying special attention to such staple crops as rice, maize, and pulses. It includes an excellent mix of specific examples, such as the creation of nutritionally-fortified rice and a discussion of the political and economic implications of genetically engineered food. The result is a must-have hands-on guide, ideally suited for Agricultural Scientists, Students of Agriculture, Plant Physiologists, Plant Breeders, Botanists and Biotechnologists. Sections include: PART I Climate Change and Abiotic Stress Factors PART II Methods to Improve Crop Productivity PART III Species-Specific Case Studies: Graminoids, Leguminosae, Rosaceae
Advances in Rice Research for Abiotic Stress Tolerance
Title | Advances in Rice Research for Abiotic Stress Tolerance PDF eBook |
Author | Mirza Hasanuzzaman |
Publisher | Woodhead Publishing |
Pages | 988 |
Release | 2018-11-12 |
Genre | Science |
ISBN | 0128143339 |
Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. - Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses - Provides practical insights into a wide range of management and crop improvement practices - Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology
Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants
Title | Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants PDF eBook |
Author | Mohammad Anwar Hossain |
Publisher | Academic Press |
Pages | 364 |
Release | 2020-01-22 |
Genre | Science |
ISBN | 0128178930 |
Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants provides the latest, in-depth understanding of the molecular mechanisms associated with the development of stress and cross-stress tolerance in plants. Plants growing under field conditions are constantly exposed, either sequentially or simultaneously, to many abiotic or biotic stress factors. As a result, many plants have developed unique strategies to respond to ever-changing environmental conditions, enabling them to monitor their surroundings and adjust their metabolic systems to maintain homeostasis. Recently, priming mediated stress and cross-stress tolerance (i.e., greater tolerance to a second, stronger stress after exposure to a different, milder primary stress) have attracted considerable interest within the scientific community as potential means of stress management and for producing stress-resistant crops to aid global food security. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants comprehensively reviews the physiological, biochemical, and molecular basis of cross-tolerance phenomena, allowing researchers to develop strategies to enhance crop productivity under stressful conditions and to utilize natural resources more efficiently. The book is a valuable asset for plant and agricultural scientists in corporate or government environments, as well as educators and advanced students looking to promote future research into plant stress tolerance. - Provides comprehensive information for developing multiple stress-tolerant crop varieties - Includes in-depth physiological, biochemical, and molecular information associated with cross-tolerance - Includes contribution from world-leading cross-tolerance research group - Presents color images and diagrams for effective communication of key concepts
Abiotic Stress and Legumes
Title | Abiotic Stress and Legumes PDF eBook |
Author | Vijay Pratap Singh |
Publisher | Academic Press |
Pages | 424 |
Release | 2021-08-22 |
Genre | Technology & Engineering |
ISBN | 0128153563 |
Abiotic Stress and Legumes: Tolerance and Management is the first book to focus on the ability of legume plants to adapt effectively to environmental challenges. Using the -omic approach, this book takes a targeted approach to understanding the methods and means of ensuring survival and maximizing the productivity of the legume plant by improving tolerance to environmental /abiotic stress factors including drought, temperature change, and other challenges. The book presents a comprehensive overview of the progress that has been made in identifying means of managing abiotic stress effects, specifically in legumes, including the development of several varieties which exhibit tolerance through high yield using transcriptomic, proteomic, metabolomic and ionomic approaches. Further, exogenous application of various stimulants such as plant hormones, nutrients, sugars, and polyamines has emerged as an alternative strategy to improve productivity under these environmental challenges. Abiotic Stress and Legumes: Tolerance and Management examines these emerging strategies and serves as an important resource for researchers, academicians and scientists, enhancing their knowledge and aiding further research. - Explores the progress made in managing abiotic stress, specifically with high yield legumes - Highlights the molecular mechanisms related to acclimation - Presents proven strategies and emerging approaches to guide additional research
Genomic Designing for Abiotic Stress Resistant Cereal Crops
Title | Genomic Designing for Abiotic Stress Resistant Cereal Crops PDF eBook |
Author | Chittaranjan Kole |
Publisher | Springer Nature |
Pages | 332 |
Release | 2021-08-31 |
Genre | Science |
ISBN | 3030758753 |
This book presents abiotic stresses that cause crop damage in the range of 6-20%. Understanding the interaction of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FPNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The nine chapters each dedicated to a cereal crop in this volume are deliberate on different types of abiotic stresses and their effects on and interaction with crop plants; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; are brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; elucidate on the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
Ascorbic Acid in Plant Growth, Development and Stress Tolerance
Title | Ascorbic Acid in Plant Growth, Development and Stress Tolerance PDF eBook |
Author | Mohammad Anwar Hossain |
Publisher | Springer |
Pages | 514 |
Release | 2018-03-19 |
Genre | Technology & Engineering |
ISBN | 3319740571 |
Ascorbic acid (AsA), vitamin C, is one of the most abundant water-soluble antioxidant in plants and animals. In plants AsA serves as a major redox buffer and regulates various physiological processes controlling growth, development, and stress tolerance. Recent studies on AsA homeostasis have broadened our understanding of these physiological events. At the mechanistic level, AsA has been shown to participate in numerous metabolic and cell signaling processes, and the dynamic relationship between AsA and reactive oxygen species (ROS) has been well documented. Being a major component of the ascorbate-glutathione (AsA-GSH) cycle, AsA helps to modulate oxidative stress in plants by controlling ROS detoxification alone and in co-operation with glutathione. In contrast to the single pathway responsible for AsA biosynthesis in animals, plants utilize multiple pathways to synthesize AsA, perhaps reflecting the importance of this molecule to plant health. Any fluctuations, increases or decreases, in cellular AsA levels can have profound effects on plant growth and development, as AsA is associated with the regulation of the cell cycle, redox signaling, enzyme function and defense gene expression. Although there has been significant progress made investigating the multiple roles AsA plays in stress tolerance, many aspects of AsA-mediated physiological responses require additional research if AsA metabolism is to be manipulated to enhance stress-tolerance. This book summarizes the roles of AsA that are directly or indirectly involved in the metabolic processes and physiological functions of plants. Key topics include AsA biosynthesis and metabolism, compartmentation and transport, AsA-mediated ROS detoxification, as well as AsA signaling functions in plant growth, development and responses to environmental stresses. The main objective of this volume is therefore to supply comprehensive and up-to-date information for students, scholars and scientists interested in or currently engaged in AsA research.
Plant Breeding for Abiotic Stress Tolerance
Title | Plant Breeding for Abiotic Stress Tolerance PDF eBook |
Author | Roberto Fritsche-Neto |
Publisher | Springer Science & Business Media |
Pages | 178 |
Release | 2012-06-05 |
Genre | Science |
ISBN | 3642305539 |
The rapid population growth and the increase in the per capita income, especially in the group of emerging countries referred to as BRIC countries (Brazil, Russia, India, China and South Africa) has created huge pressure for the expansion of the agricultural growing area and the crop yields to meet the rising demand. As a result, many areas that have been considered marginal for growing crops, due to their low fertility, drought, salinity, and many other abiotic stresses, have now been incorporated in the production system. Additionally, climate change has brought new challenges to agriculture to produce food, feed, fiber and biofuels. To cope with these new challenges, many plant breeding programs have reoriented their breeding scope to stress tolerance in the last years. The authors of this book have collected the most recent advances and discoveries applied to breeding for abiotic stresses in this book, starting with new physiological concepts and breeding methods, and moving on to discuss modern molecular biological approaches geared to the development of improved cultivars tolerant to most sorts of abiotic stress. Written in an easy to understand style, this book is an excellent reference work for students, scientists and farmers interested in learning how to breed for abiotic stresses scenarios, presenting the state-of-the-art in plant stresses and allowing the reader to develop a greater understanding of the basic mechanisms of tolerance to abiotic stresses and how to breed for them.