Adaptive Radiation Therapy
Title | Adaptive Radiation Therapy PDF eBook |
Author | X. Allen Li |
Publisher | CRC Press |
Pages | 404 |
Release | 2011-01-27 |
Genre | Medical |
ISBN | 1439816352 |
Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging an
Machine Learning in Radiation Oncology
Title | Machine Learning in Radiation Oncology PDF eBook |
Author | Issam El Naqa |
Publisher | Springer |
Pages | 336 |
Release | 2015-06-19 |
Genre | Medical |
ISBN | 3319183052 |
This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
The Modern Technology of Radiation Oncology
Title | The Modern Technology of Radiation Oncology PDF eBook |
Author | Jake Van Dyk |
Publisher | Medical Physics Publishing Corporation |
Pages | 1106 |
Release | 1999 |
Genre | Medical |
ISBN |
Details technology associated with radiation oncology, emphasizing design of all equipment allied with radiation treatment. Describes procedures required to implement equipment in clinical service, covering needs assessment, purchase, acceptance, and commissioning, and explains quality assurance issues. Also addresses less common and evolving technologies. For medical physicists and radiation oncologists, as well as radiation therapists, dosimetrists, and engineering technologists. Includes bandw medical images and photos of equipment. Paper edition (unseen), $145.95. Annotation copyrighted by Book News, Inc., Portland, OR
Surface Guided Radiation Therapy
Title | Surface Guided Radiation Therapy PDF eBook |
Author | Jeremy David Page Hoisak |
Publisher | CRC Press |
Pages | 515 |
Release | 2020-02-13 |
Genre | Medical |
ISBN | 0429951809 |
Surface Guided Radiation Therapy provides a comprehensive overview of optical surface image guidance systems for radiation therapy. It serves as an introductory teaching resource for students and trainees, and a valuable reference for medical physicists, physicians, radiation therapists, and administrators who wish to incorporate surface guided radiation therapy (SGRT) into their clinical practice. This is the first book dedicated to the principles and practice of SGRT, featuring: Chapters authored by an internationally represented list of physicists, radiation oncologists and therapists, edited by pioneers and experts in SGRT Covering the evolution of localization systems and their role in quality and safety, current SGRT systems, practical guides to commissioning and quality assurance, clinical applications by anatomic site, and emerging topics including skin mark-less setups. Several dedicated chapters on SGRT for intracranial radiosurgery and breast, covering technical aspects, risk assessment and outcomes. Jeremy Hoisak, PhD, DABR is an Assistant Professor in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Hoisak’s clinical expertise includes radiosurgery and respiratory motion management. Adam Paxton, PhD, DABR is an Assistant Professor in the Department of Radiation Oncology at the University of Utah. Dr. Paxton’s clinical expertise includes patient safety, motion management, radiosurgery, and proton therapy. Benjamin Waghorn, PhD, DABR is the Director of Clinical Physics at Vision RT. Dr. Waghorn’s research interests include intensity modulated radiation therapy, motion management, and surface image guidance systems. Todd Pawlicki, PhD, DABR, FAAPM, FASTRO, is Professor and Vice-Chair for Medical Physics in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Pawlicki has published extensively on quality and safety in radiation therapy. He has served on the Board of Directors for the American Society for Radiology Oncology (ASTRO) and the American Association of Physicists in Medicine (AAPM).
Machine learning-based adaptive radiotherapy treatments: From bench top to bedside
Title | Machine learning-based adaptive radiotherapy treatments: From bench top to bedside PDF eBook |
Author | Jiahan Zhang |
Publisher | Frontiers Media SA |
Pages | 124 |
Release | 2023-05-12 |
Genre | Medical |
ISBN | 2832523315 |
Deep Learning and Data Labeling for Medical Applications
Title | Deep Learning and Data Labeling for Medical Applications PDF eBook |
Author | Gustavo Carneiro |
Publisher | Springer |
Pages | 289 |
Release | 2016-10-07 |
Genre | Computers |
ISBN | 3319469762 |
This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.
Image and Graphics
Title | Image and Graphics PDF eBook |
Author | Huchuan Lu |
Publisher | Springer Nature |
Pages | 384 |
Release | 2023-10-28 |
Genre | Computers |
ISBN | 303146317X |
The five-volume set LNCS 14355, 14356, 14357, 14358 and 14359 constitutes the refereed proceedings of the 12th International Conference on Image and Graphics, ICIG 2023, held in Nanjing, China, during September 22–24, 2023. The 166 papers presented in the proceedings set were carefully reviewed and selected from 409 submissions. They were organized in topical sections as follows: computer vision and pattern recognition; computer graphics and visualization; compression, transmission, retrieval; artificial intelligence; biological and medical image processing; color and multispectral processing; computational imaging; multi-view and stereoscopic processing; multimedia security; surveillance and remote sensing, and virtual reality. The ICIG 2023 is a biennial conference that focuses on innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking. It will feature world-class plenary speakers, exhibits, and high-quality peer reviewed oral and poster presentations.