Image Processing Using Pulse-Coupled Neural Networks
Title | Image Processing Using Pulse-Coupled Neural Networks PDF eBook |
Author | Thomas Lindblad |
Publisher | Springer Science & Business Media |
Pages | 184 |
Release | 2005-08-02 |
Genre | Technology & Engineering |
ISBN | 9783540242185 |
* Weitere Angaben Verfasser: Thomas Lindblad is a professor at the Royal Institute of Technology (Physics) in Stockholm. Working and teaching nuclear and environmental physics his main interest is with sensors, signal processing and intelligent data analysis of torrent data from experiments on-line accelerators, in space, etc. Jason Kinser is an associate professor at George Mason University. He has developed a plethora of image processing applications in the medical, military, and industrial fields. He has been responsible for the conversion of PCNN theory into practical applications providing many improvements in both speed and performance
Image Processing using Pulse-Coupled Neural Networks
Title | Image Processing using Pulse-Coupled Neural Networks PDF eBook |
Author | Thomas Lindblad |
Publisher | Springer Science & Business Media |
Pages | 154 |
Release | 2013-04-17 |
Genre | Computers |
ISBN | 1447136179 |
PCNNs represent a new advance in imaging technology, allowing images to be refined to levels well beyond that of the original. This volume provides an introduction to the topic by reviewing the theoretical foundations as well as a number of image processing applications, including segmentation, edge extraction, texture extraction, object identification, object isolation, motion processing, noise suppression, and image fusion. This is the first book to cover PCNN technology, an area which will have many applications in medical, military and industrial imaging.
Applications of Pulse-Coupled Neural Networks
Title | Applications of Pulse-Coupled Neural Networks PDF eBook |
Author | Yide Ma |
Publisher | Springer Science & Business Media |
Pages | 206 |
Release | 2011-09-02 |
Genre | Computers |
ISBN | 3642137458 |
"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Science and Engineering, Lanzhou University, China.
Image Processing using Pulse-Coupled Neural Networks
Title | Image Processing using Pulse-Coupled Neural Networks PDF eBook |
Author | Thomas Lindblad |
Publisher | Springer Science & Business Media |
Pages | 246 |
Release | 2013-05-13 |
Genre | Technology & Engineering |
ISBN | 3642368778 |
Image processing algorithms based on the mammalian visual cortex are powerful tools for extraction information and manipulating images. This book reviews the neural theory and translates them into digital models. Applications are given in areas of image recognition, foveation, image fusion and information extraction. The third edition reflects renewed international interest in pulse image processing with updated sections presenting several newly developed applications. This edition also introduces a suite of Python scripts that assist readers in replicating results presented in the text and to further develop their own applications.
Practical Machine Learning and Image Processing
Title | Practical Machine Learning and Image Processing PDF eBook |
Author | Himanshu Singh |
Publisher | Apress |
Pages | 177 |
Release | 2019-02-26 |
Genre | Computers |
ISBN | 1484241495 |
Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will LearnDiscover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.
Image Processing Using Pulse-Coupled Neural Networks
Title | Image Processing Using Pulse-Coupled Neural Networks PDF eBook |
Author | Thomas Lindblad |
Publisher | Springer |
Pages | 164 |
Release | 2009-09-02 |
Genre | Technology & Engineering |
ISBN | 9783540806509 |
Nature-Inspired Design of Hybrid Intelligent Systems
Title | Nature-Inspired Design of Hybrid Intelligent Systems PDF eBook |
Author | Patricia Melin |
Publisher | Springer |
Pages | 817 |
Release | 2016-12-08 |
Genre | Technology & Engineering |
ISBN | 331947054X |
This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. The sixth part examines new optimization algorithms and their applications. Lastly, the seventh part is dedicated to the design and application of different hybrid intelligent systems.