Ill-posed Variational Problems and Regularization Techniques

Ill-posed Variational Problems and Regularization Techniques
Title Ill-posed Variational Problems and Regularization Techniques PDF eBook
Author Michel Thera
Publisher Springer Science & Business Media
Pages 281
Release 2012-12-06
Genre Business & Economics
ISBN 3642457800

Download Ill-posed Variational Problems and Regularization Techniques Book in PDF, Epub and Kindle

This book presents recent developments in the field of ill-posed variational problems and variational inequalities, covering a large range of theoretical, numerical and practical aspects. The main topics are: - Regularization techniques for equilibrium and fixed point problems, variational inequalities and complementary problems, - Links between approximation, penalization and regularization, - Bundle methods, nonsmooth optimization and regularization, - Error Bounds for regularized optimization problems.

Regularization Algorithms for Ill-Posed Problems

Regularization Algorithms for Ill-Posed Problems
Title Regularization Algorithms for Ill-Posed Problems PDF eBook
Author Anatoly B. Bakushinsky
Publisher Walter de Gruyter GmbH & Co KG
Pages 447
Release 2018-02-05
Genre Mathematics
ISBN 3110556383

Download Regularization Algorithms for Ill-Posed Problems Book in PDF, Epub and Kindle

This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems
Title Computational Methods for Inverse Problems PDF eBook
Author Curtis R. Vogel
Publisher SIAM
Pages 195
Release 2002-01-01
Genre Mathematics
ISBN 0898717574

Download Computational Methods for Inverse Problems Book in PDF, Epub and Kindle

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Regularization of Ill-Posed Problems by Iteration Methods

Regularization of Ill-Posed Problems by Iteration Methods
Title Regularization of Ill-Posed Problems by Iteration Methods PDF eBook
Author S.F. Gilyazov
Publisher Springer Science & Business Media
Pages 348
Release 2013-04-17
Genre Mathematics
ISBN 9401594821

Download Regularization of Ill-Posed Problems by Iteration Methods Book in PDF, Epub and Kindle

Iteration regularization, i.e., utilization of iteration methods of any form for the stable approximate solution of ill-posed problems, is one of the most important but still insufficiently developed topics of the new theory of ill-posed problems. In this monograph, a general approach to the justification of iteration regulari zation algorithms is developed, which allows us to consider linear and nonlinear methods from unified positions. Regularization algorithms are the 'classical' iterative methods (steepest descent methods, conjugate direction methods, gradient projection methods, etc.) complemented by the stopping rule depending on level of errors in input data. They are investigated for solving linear and nonlinear operator equations in Hilbert spaces. Great attention is given to the choice of iteration index as the regularization parameter and to estimates of errors of approximate solutions. Stabilizing properties such as smoothness and shape constraints imposed on the solution are used. On the basis of these investigations, we propose and establish efficient regularization algorithms for stable numerical solution of a wide class of ill-posed problems. In particular, descriptive regularization algorithms, utilizing a priori information about the qualitative behavior of the sought solution and ensuring a substantial saving in computational costs, are considered for model and applied problems in nonlinear thermophysics. The results of calculations for important applications in various technical fields (a continuous casting, the treatment of materials and perfection of heat-protective systems using laser and composite technologies) are given.

Iterative Regularization Methods for Nonlinear Ill-Posed Problems

Iterative Regularization Methods for Nonlinear Ill-Posed Problems
Title Iterative Regularization Methods for Nonlinear Ill-Posed Problems PDF eBook
Author Barbara Kaltenbacher
Publisher Walter de Gruyter
Pages 205
Release 2008-09-25
Genre Mathematics
ISBN 311020827X

Download Iterative Regularization Methods for Nonlinear Ill-Posed Problems Book in PDF, Epub and Kindle

Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.

Recent Advances in Optimization

Recent Advances in Optimization
Title Recent Advances in Optimization PDF eBook
Author Alberto Seeger
Publisher Springer Science & Business Media
Pages 457
Release 2006-01-26
Genre Mathematics
ISBN 3540282580

Download Recent Advances in Optimization Book in PDF, Epub and Kindle

The contributions appearing in this book give an overview of recent research done in optimization and related areas, such as optimal control, calculus of variations, and game theory. They do not only address abstract issues of optimization theory, but are also concerned with the modeling and computer resolution of specific optimization problems arising in industry and applied sciences.

Encyclopedia of Optimization

Encyclopedia of Optimization
Title Encyclopedia of Optimization PDF eBook
Author Christodoulos A. Floudas
Publisher Springer Science & Business Media
Pages 4646
Release 2008-09-04
Genre Mathematics
ISBN 0387747583

Download Encyclopedia of Optimization Book in PDF, Epub and Kindle

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".