Identification of Linear Systems

Identification of Linear Systems
Title Identification of Linear Systems PDF eBook
Author J. Schoukens
Publisher Elsevier
Pages 353
Release 2014-06-28
Genre Science
ISBN 0080912567

Download Identification of Linear Systems Book in PDF, Epub and Kindle

This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.

Subspace Identification for Linear Systems

Subspace Identification for Linear Systems
Title Subspace Identification for Linear Systems PDF eBook
Author Peter van Overschee
Publisher Springer Science & Business Media
Pages 263
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461304652

Download Subspace Identification for Linear Systems Book in PDF, Epub and Kindle

Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.

Modeling and Identification of Linear Parameter-Varying Systems

Modeling and Identification of Linear Parameter-Varying Systems
Title Modeling and Identification of Linear Parameter-Varying Systems PDF eBook
Author Roland Toth
Publisher Springer Science & Business Media
Pages 337
Release 2010-06-13
Genre Technology & Engineering
ISBN 364213811X

Download Modeling and Identification of Linear Parameter-Varying Systems Book in PDF, Epub and Kindle

Through the past 20 years, the framework of Linear Parameter-Varying (LPV) systems has become a promising system theoretical approach to h- dle the controlof mildly nonlinear and especially position dependent systems which are common in mechatronic applications and in the process ind- try. The birth of this system class was initiated by the need of engineers to achieve better performance for nonlinear and time-varying dynamics, c- mon in many industrial applications, than what the classical framework of Linear Time-Invariant (LTI) control can provide. However, it was also a p- mary goal to preserve simplicity and “re-use” the powerful LTI results by extending them to the LPV case. The progress continued according to this philosophy and LPV control has become a well established ?eld with many promising applications. Unfortunately, modeling of LPV systems, especially based on measured data (which is called system identi?cation) has seen a limited development sincethebirthoftheframework. Currentlythisbottleneck oftheLPVfra- work is halting the transfer of the LPV theory into industrial use. Without good models that ful?ll the expectations of the users and without the und- standing how these models correspond to the dynamics of the application, it is di?cult to design high performance LPV control solutions. This book aims to bridge the gap between modeling and control by investigating the fundamental questions of LPV modeling and identi?cation. It explores the missing details of the LPV system theory that have hindered the formu- tion of a well established identi?cation framework.

Linear Parameter-varying System Identification

Linear Parameter-varying System Identification
Title Linear Parameter-varying System Identification PDF eBook
Author Paulo Lopes dos Santos
Publisher World Scientific
Pages 402
Release 2012
Genre Mathematics
ISBN 9814355445

Download Linear Parameter-varying System Identification Book in PDF, Epub and Kindle

This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. It focuses on the most recent LPV identification methods for both discrete-time and continuous-time models--

Identification of Nonlinear Physiological Systems

Identification of Nonlinear Physiological Systems
Title Identification of Nonlinear Physiological Systems PDF eBook
Author David T. Westwick
Publisher John Wiley & Sons
Pages 284
Release 2003-08-28
Genre Technology & Engineering
ISBN 9780471274568

Download Identification of Nonlinear Physiological Systems Book in PDF, Epub and Kindle

Significant advances have been made in the field since the previous classic texts were written. This text brings the available knowledge up to date. * Enables the reader to use a wide variety of nonlinear system identification techniques. * Offers a thorough treatment of the underlying theory. * Provides a MATLAB toolbox containing implementation of the latest identification methods together with an extensive set of problems using realistic data sets.

Linear Systems

Linear Systems
Title Linear Systems PDF eBook
Author Thomas Kailath
Publisher Prentice Hall
Pages 710
Release 1980
Genre Computers
ISBN

Download Linear Systems Book in PDF, Epub and Kindle

State-space description-some basic concepts; Linear state-variable feedbach; Asymptotic observers and compensator design; Some algebraic complements; State-space and matrix-fraction description of multivariable systems; State feedback and compensator design; General differential systems and polynomial matrix descriptions; Some results for time-variant systems; Some further reading.

Linear Stochastic Systems

Linear Stochastic Systems
Title Linear Stochastic Systems PDF eBook
Author Anders Lindquist
Publisher Springer
Pages 788
Release 2015-04-24
Genre Science
ISBN 3662457504

Download Linear Stochastic Systems Book in PDF, Epub and Kindle

This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.