Numerical Data Fitting in Dynamical Systems

Numerical Data Fitting in Dynamical Systems
Title Numerical Data Fitting in Dynamical Systems PDF eBook
Author Klaus Schittkowski
Publisher Springer Science & Business Media
Pages 416
Release 2002-12-31
Genre Computers
ISBN 9781402010798

Download Numerical Data Fitting in Dynamical Systems Book in PDF, Epub and Kindle

Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.

Identification of Dynamic Systems

Identification of Dynamic Systems
Title Identification of Dynamic Systems PDF eBook
Author Rolf Isermann
Publisher Springer
Pages 705
Release 2011-04-08
Genre Technology & Engineering
ISBN 9783540871552

Download Identification of Dynamic Systems Book in PDF, Epub and Kindle

Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Title Data-Driven Science and Engineering PDF eBook
Author Steven L. Brunton
Publisher Cambridge University Press
Pages 615
Release 2022-05-05
Genre Computers
ISBN 1009098489

Download Data-Driven Science and Engineering Book in PDF, Epub and Kindle

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Mathematics in Population Biology

Mathematics in Population Biology
Title Mathematics in Population Biology PDF eBook
Author Horst R. Thieme
Publisher Princeton University Press
Pages 564
Release 2018-06-05
Genre Science
ISBN 0691187657

Download Mathematics in Population Biology Book in PDF, Epub and Kindle

The formulation, analysis, and re-evaluation of mathematical models in population biology has become a valuable source of insight to mathematicians and biologists alike. This book presents an overview and selected sample of these results and ideas, organized by biological theme rather than mathematical concept, with an emphasis on helping the reader develop appropriate modeling skills through use of well-chosen and varied examples. Part I starts with unstructured single species population models, particularly in the framework of continuous time models, then adding the most rudimentary stage structure with variable stage duration. The theme of stage structure in an age-dependent context is developed in Part II, covering demographic concepts, such as life expectation and variance of life length, and their dynamic consequences. In Part III, the author considers the dynamic interplay of host and parasite populations, i.e., the epidemics and endemics of infectious diseases. The theme of stage structure continues here in the analysis of different stages of infection and of age-structure that is instrumental in optimizing vaccination strategies. Each section concludes with exercises, some with solutions, and suggestions for further study. The level of mathematics is relatively modest; a "toolbox" provides a summary of required results in differential equations, integration, and integral equations. In addition, a selection of Maple worksheets is provided. The book provides an authoritative tour through a dazzling ensemble of topics and is both an ideal introduction to the subject and reference for researchers.

Numerical Methods for Bifurcations of Dynamical Equilibria

Numerical Methods for Bifurcations of Dynamical Equilibria
Title Numerical Methods for Bifurcations of Dynamical Equilibria PDF eBook
Author Willy J. F. Govaerts
Publisher SIAM
Pages 384
Release 2000-01-01
Genre Mathematics
ISBN 9780898719543

Download Numerical Methods for Bifurcations of Dynamical Equilibria Book in PDF, Epub and Kindle

Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.

Neural Network Modeling and Identification of Dynamical Systems

Neural Network Modeling and Identification of Dynamical Systems
Title Neural Network Modeling and Identification of Dynamical Systems PDF eBook
Author Yury Tiumentsev
Publisher Academic Press
Pages 334
Release 2019-05-17
Genre Science
ISBN 0128154306

Download Neural Network Modeling and Identification of Dynamical Systems Book in PDF, Epub and Kindle

Neural Network Modeling and Identification of Dynamical Systems presents a new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. - Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and training - Offers application examples of dynamic neural network technologies, primarily related to aircraft - Provides an overview of recent achievements and future needs in this area

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Title Scientific and Technical Aerospace Reports PDF eBook
Author
Publisher
Pages 818
Release 1994
Genre Aeronautics
ISBN

Download Scientific and Technical Aerospace Reports Book in PDF, Epub and Kindle