Identifiability of Parametric Models

Identifiability of Parametric Models
Title Identifiability of Parametric Models PDF eBook
Author Eric Walter
Publisher Pergamon
Pages 140
Release 1987
Genre Science
ISBN

Download Identifiability of Parametric Models Book in PDF, Epub and Kindle

Identifiability of Parametric Models

Identifiability of Parametric Models
Title Identifiability of Parametric Models PDF eBook
Author E. Walter
Publisher Elsevier
Pages 132
Release 2014-05-23
Genre Technology & Engineering
ISBN 1483155951

Download Identifiability of Parametric Models Book in PDF, Epub and Kindle

Identifiability of Parametric Models provides a comprehensive presentation of identifiability. This book is divided into 11 chapters. Chapter 1 reviews the basic methods for structural identifiability testing. The methods that deal with large-scale models and propose conjectures on global identifiability are considered in Chapter 2, while the problems of initial model selection and generating the set of models that have the exact same input-output behavior are evaluated in Chapter 3. Chapters 4 and 5 cover nonlinear models. The relations between identifiability and the well-posedness of the estimation problem are analyzed in Chapter 6, followed by a description of the algebraic manipulations required for testing a model for structural controllability, observability, identifiability, or distinguishability in chapter 7. The rest of the chapters are devoted to the relations between identifiability and parameter uncertainty. This publication is beneficial to students and researchers aiming to acquire knowledge of the identifiability of parametric models.

Process Control

Process Control
Title Process Control PDF eBook
Author Jean-Pierre Corriou
Publisher Springer Science & Business Media
Pages 763
Release 2013-03-09
Genre Science
ISBN 1447138481

Download Process Control Book in PDF, Epub and Kindle

This reference book can be read at different levels, making it a powerful source of information. It presents most of the aspects of control that can help anyone to have a synthetic view of control theory and possible applications, especially concerning process engineering.

2019-20 MATRIX Annals

2019-20 MATRIX Annals
Title 2019-20 MATRIX Annals PDF eBook
Author Jan de Gier
Publisher Springer Nature
Pages 798
Release 2021-02-10
Genre Mathematics
ISBN 3030624978

Download 2019-20 MATRIX Annals Book in PDF, Epub and Kindle

MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.

Parameter Redundancy and Identifiability

Parameter Redundancy and Identifiability
Title Parameter Redundancy and Identifiability PDF eBook
Author Diana Cole
Publisher CRC Press
Pages 273
Release 2020-05-10
Genre Mathematics
ISBN 1498720900

Download Parameter Redundancy and Identifiability Book in PDF, Epub and Kindle

Statistical and mathematical models are defined by parameters that describe different characteristics of those models. Ideally it would be possible to find parameter estimates for every parameter in that model, but, in some cases, this is not possible. For example, two parameters that only ever appear in the model as a product could not be estimated individually; only the product can be estimated. Such a model is said to be parameter redundant, or the parameters are described as non-identifiable. This book explains why parameter redundancy and non-identifiability is a problem and the different methods that can be used for detection, including in a Bayesian context. Key features of this book: Detailed discussion of the problems caused by parameter redundancy and non-identifiability Explanation of the different general methods for detecting parameter redundancy and non-identifiability, including symbolic algebra and numerical methods Chapter on Bayesian identifiability Throughout illustrative examples are used to clearly demonstrate each problem and method. Maple and R code are available for these examples More in-depth focus on the areas of discrete and continuous state-space models and ecological statistics, including methods that have been specifically developed for each of these areas This book is designed to make parameter redundancy and non-identifiability accessible and understandable to a wide audience from masters and PhD students to researchers, from mathematicians and statisticians to practitioners using mathematical or statistical models.

Identification of Parametric Models

Identification of Parametric Models
Title Identification of Parametric Models PDF eBook
Author Eric Walter
Publisher
Pages 440
Release 1997-01-14
Genre Computers
ISBN

Download Identification of Parametric Models Book in PDF, Epub and Kindle

The presentation of a coherent methodology for the estimation of the parameters of mathematical models from experimental data is examined in this volume. Many topics are covered including the choice of the structure of the mathematical model, the choice of a performance criterion to compare models, the optimization of this performance criterion, the evaluation of the uncertainty in the estimated parameters, the design of experiments so as to get the most relevant data and the critical analysis of results. There are also several features unique to the work such as an up-to-date presentation of the methodology for testing models for identifiability and distinguishability and a comprehensive treatment of parametric optimization which includes greater consider ation of numerical aspects and which examines recursive and non-recursive methods for linear and nonlinear models.

Principles of System Identification

Principles of System Identification
Title Principles of System Identification PDF eBook
Author Arun K. Tangirala
Publisher CRC Press
Pages 881
Release 2018-10-08
Genre Technology & Engineering
ISBN 143989602X

Download Principles of System Identification Book in PDF, Epub and Kindle

Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397