Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces

Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces
Title Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces PDF eBook
Author F. Dahmani
Publisher American Mathematical Soc.
Pages 164
Release 2017-01-18
Genre Mathematics
ISBN 1470421941

Download Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces Book in PDF, Epub and Kindle

he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.

Flexibility of Group Actions on the Circle

Flexibility of Group Actions on the Circle
Title Flexibility of Group Actions on the Circle PDF eBook
Author Sang-hyun Kim
Publisher Springer
Pages 140
Release 2019-01-02
Genre Mathematics
ISBN 3030028550

Download Flexibility of Group Actions on the Circle Book in PDF, Epub and Kindle

In this partly expository work, a framework is developed for building exotic circle actions of certain classical groups. The authors give general combination theorems for indiscrete isometry groups of hyperbolic space which apply to Fuchsian and limit groups. An abundance of integer-valued subadditive defect-one quasimorphisms on these groups follow as a corollary. The main classes of groups considered are limit and Fuchsian groups. Limit groups are shown to admit large collections of faithful actions on the circle with disjoint rotation spectra. For Fuchsian groups, further flexibility results are proved and the existence of non-geometric actions of free and surface groups is established. An account is given of the extant notions of semi-conjugacy, showing they are equivalent. This book is suitable for experts interested in flexibility of representations, and for non-experts wanting an introduction to group representations into circle homeomorphism groups.

Geometric Group Theory

Geometric Group Theory
Title Geometric Group Theory PDF eBook
Author Mladen Bestvina
Publisher American Mathematical Soc.
Pages 417
Release 2014-12-24
Genre Mathematics
ISBN 1470412276

Download Geometric Group Theory Book in PDF, Epub and Kindle

Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) groups. One course surveys quasi-isometric rigidity, others contain an exploration of the geometry of Outer space, of actions of arithmetic groups, lectures on lattices and locally symmetric spaces, on marked length spectra and on expander graphs, Property tau and approximate groups. This book is a valuable resource for graduate students and researchers interested in geometric group theory. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

The Cremona Group and Its Subgroups

The Cremona Group and Its Subgroups
Title The Cremona Group and Its Subgroups PDF eBook
Author Julie Déserti
Publisher American Mathematical Soc.
Pages 187
Release 2021-04-13
Genre Education
ISBN 1470460122

Download The Cremona Group and Its Subgroups Book in PDF, Epub and Kindle

The goal of this book is to present a portrait of the n n-dimensional Cremona group with an emphasis on the 2-dimensional case. After recalling some crucial tools, the book describes a naturally defined infinite dimensional hyperbolic space on which the Cremona group acts. This space plays a fundamental role in the study of Cremona groups, as it allows one to apply tools from geometric group theory to explore properties of the subgroups of the Cremona group as well as the degree growth and dynamical behavior of birational transformations. The book describes natural topologies on the Cremona group, codifies the notion of algebraic subgroups of the Cremona groups and finishes with a chapter on the dynamics of their actions. This book is aimed at graduate students and researchers in algebraic geometry who are interested in birational geometry and its interactions with geometric group theory and dynamical systems.

Beyond Hyperbolicity

Beyond Hyperbolicity
Title Beyond Hyperbolicity PDF eBook
Author Mark Hagen
Publisher Cambridge University Press
Pages 242
Release 2019-07-11
Genre Mathematics
ISBN 1108447295

Download Beyond Hyperbolicity Book in PDF, Epub and Kindle

Contains expository articles and research papers in geometric group theory focusing on generalisations of Gromov hyperbolicity.

Lectures on Geometry

Lectures on Geometry
Title Lectures on Geometry PDF eBook
Author Edward Witten
Publisher Oxford University Press
Pages 227
Release 2017-02-09
Genre Science
ISBN 0191087823

Download Lectures on Geometry Book in PDF, Epub and Kindle

This volume contains a collection of papers based on lectures delivered by distinguished mathematicians at Clay Mathematics Institute events over the past few years. It is intended to be the first in an occasional series of volumes of CMI lectures. Although not explicitly linked, the topics in this inaugural volume have a common flavour and a common appeal to all who are interested in recent developments in geometry. They are intended to be accessible to all who work in this general area, regardless of their own particular research interests.

Infinite Group Actions on Polyhedra

Infinite Group Actions on Polyhedra
Title Infinite Group Actions on Polyhedra PDF eBook
Author MICHAEL W. DAVIS
Publisher Springer Nature
Pages 273
Release 2024
Genre Infinite groups
ISBN 3031484436

Download Infinite Group Actions on Polyhedra Book in PDF, Epub and Kindle

In the past fifteen years, the theory of right-angled Artin groups and special cube complexes has emerged as a central topic in geometric group theory. This monograph provides an account of this theory, along with other modern techniques in geometric group theory. Structured around the theme of group actions on contractible polyhedra, this book explores two prominent methods for constructing such actions: utilizing the group of deck transformations of the universal cover of a nonpositively curved polyhedron and leveraging the theory of simple complexes of groups. The book presents various approaches to obtaining cubical examples through CAT(0) cube complexes, including the polyhedral product construction, hyperbolization procedures, and the Sageev construction. Moreover, it offers a unified presentation of important non-cubical examples, such as Coxeter groups, Artin groups, and groups that act on buildings. Designed as a resource for graduate students and researchers specializing in geometric group theory, this book should also be of high interest to mathematicians in related areas, such as 3-manifolds.