Hyperbolic Problems: Contributed talks

Hyperbolic Problems: Contributed talks
Title Hyperbolic Problems: Contributed talks PDF eBook
Author Eitan Tadmor
Publisher American Mathematical Soc.
Pages 690
Release 2009-12-15
Genre Mathematics
ISBN 0821847309

Download Hyperbolic Problems: Contributed talks Book in PDF, Epub and Kindle

The International Conference on Hyperbolic Problems: Theory, Numerics and Applications, ``HYP2008'', was held at the University of Maryland from June 9-13, 2008. This was the twelfth meeting in the bi-annual international series of HYP conferences which originated in 1986 at Saint-Etienne, France, and over the last twenty years has become one of the highest quality and most successful conference series in Applied Mathematics. This book, the second in a two-part volume, contains more than sixty articles based on contributed talks given at the conference. The articles are written by leading researchers as well as promising young scientists and cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ``hyperbolic PDEs''. This volume will bring readers to the forefront of research in this most active and important area in applied mathematics.

Hyperbolic Problems

Hyperbolic Problems
Title Hyperbolic Problems PDF eBook
Author Song Jiang
Publisher World Scientific
Pages 793
Release 2012
Genre Mathematics
ISBN 9814417092

Download Hyperbolic Problems Book in PDF, Epub and Kindle

This two-volume book is devoted to mathematical theory, numerics and applications of hyperbolic problems. Hyperbolic problems have not only a long history but also extremely rich physical background. The development is highly stimulated by their applications to Physics, Biology, and Engineering Sciences; in particular, by the design of effective numerical algorithms. Due to recent rapid development of computers, more and more scientists use hyperbolic partial differential equations and related evolutionary equations as basic tools when proposing new mathematical models of various phenomena and related numerical algorithms.This book contains 80 original research and review papers which are written by leading researchers and promising young scientists, which cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of OC Hyperbolic Partial Differential EquationsOCO. It is aimed at mathematicians, researchers in applied sciences and graduate students."

Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications
Title Hyperbolic Problems: Theory, Numerics, Applications PDF eBook
Author Thomas Y. Hou
Publisher Springer Science & Business Media
Pages 946
Release 2012-12-06
Genre Mathematics
ISBN 3642557112

Download Hyperbolic Problems: Theory, Numerics, Applications Book in PDF, Epub and Kindle

The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.

Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications
Title Hyperbolic Problems: Theory, Numerics, Applications PDF eBook
Author Sylvie Benzoni-Gavage
Publisher Springer Science & Business Media
Pages 1117
Release 2008-01-12
Genre Mathematics
ISBN 3540757120

Download Hyperbolic Problems: Theory, Numerics, Applications Book in PDF, Epub and Kindle

This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.

Hyperbolic Problems: Theory, Numerics, Applications. Volume II

Hyperbolic Problems: Theory, Numerics, Applications. Volume II
Title Hyperbolic Problems: Theory, Numerics, Applications. Volume II PDF eBook
Author Carlos Parés
Publisher Springer Nature
Pages 463
Release
Genre
ISBN 3031552644

Download Hyperbolic Problems: Theory, Numerics, Applications. Volume II Book in PDF, Epub and Kindle

Recent Advances in Numerical Methods for Hyperbolic PDE Systems

Recent Advances in Numerical Methods for Hyperbolic PDE Systems
Title Recent Advances in Numerical Methods for Hyperbolic PDE Systems PDF eBook
Author María Luz Muñoz-Ruiz
Publisher Springer Nature
Pages 269
Release 2021-05-25
Genre Mathematics
ISBN 3030728501

Download Recent Advances in Numerical Methods for Hyperbolic PDE Systems Book in PDF, Epub and Kindle

The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.

Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems

Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems
Title Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems PDF eBook
Author Emmanuel Franck
Publisher Springer Nature
Pages 296
Release 2023-10-12
Genre Mathematics
ISBN 3031408608

Download Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems Book in PDF, Epub and Kindle

This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. The first volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. This volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.