Hydrodynamics of Oceans and Atmospheres
Title | Hydrodynamics of Oceans and Atmospheres PDF eBook |
Author | Carl Eckart |
Publisher | Elsevier |
Pages | 303 |
Release | 2013-10-22 |
Genre | Technology & Engineering |
ISBN | 1483149560 |
Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear equations of thermodynamics and hydrodynamics are analyzed using the methods of perturbation theory, with emphasis on the zero-order solution; zero-order states of an ideal gas; the first-order equations; the additive barotropic terms; and boundary conditions. The following chapters focus on the steady component of atmospheric pressure; free steady motion with or without rotation; field equations and general theorems relating to such equations; and the stratification of the Earth's atmosphere, oceans, and lakes. The next two chapters present calculations concerning the isothermal atmosphere, with particular reference to plane level surfaces with or without rotation. The final chapter looks at spherical level surfaces with rotation. This monograph will be of interest to physicists, oceanographers, atmospheric scientists, and meteorologists.
Atmospheric and Oceanic Fluid Dynamics
Title | Atmospheric and Oceanic Fluid Dynamics PDF eBook |
Author | Geoffrey K. Vallis |
Publisher | Cambridge University Press |
Pages | 772 |
Release | 2006-11-06 |
Genre | Science |
ISBN | 1139459961 |
Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.
Atmosphere, Ocean and Climate Dynamics
Title | Atmosphere, Ocean and Climate Dynamics PDF eBook |
Author | John Marshall |
Publisher | Academic Press |
Pages | 0 |
Release | 1965-01-01 |
Genre | Science |
ISBN | 0080954456 |
For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography.* Written at a mathematical level that is appealing for undergraduates andbeginning graduate students* Provides a useful educational tool through a combination of observations andlaboratory demonstrations which can be viewed over the web* Contains instructions on how to reproduce the simple but informativelaboratory experiments* Includes copious problems (with sample answers) to help students learn thematerial.
Geophysical Fluid Dynamics I
Title | Geophysical Fluid Dynamics I PDF eBook |
Author | Emin Özsoy |
Publisher | Springer |
Pages | 287 |
Release | 2021-08-26 |
Genre | Science |
ISBN | 9783030169756 |
This textbook develops a fundamental understanding of geophysical fluid dynamics by providing a mathematical description of fluid properties, kinematics and dynamics as influenced by earth’s rotation. Its didactic value is based on elaborate treatment of basic principles, derived equations, exemplary solutions and their interpretation. Both starting graduate students and experienced scientists can closely follow the mathematical development of the basic theory applied to the flow of uniform density fluids on a rotating earth, with (1) basic physics introducing the "novel" effects of rotation for flows on planetary scales, (2) simplified dynamics of shallow water and quasi-geostrophic theories applied to a variety of steady, unsteady flows and geophysical wave motions, demonstrating the restoring effects of Coriolis acceleration, earth’s curvature (beta) and topographic steering, (3) conservation of vorticity and energy at geophysical scales, and (4) specific applications to help demonstrate the ability to create and solve new problems in this very rich field. A comprehensive review of the complex geophysical flows of the ocean and the atmosphere is closely knitted with this basic description, intended to be developed further in the second volume that addresses density stratified geophysical fluid dynamics.
Geophysical Fluid Dynamics
Title | Geophysical Fluid Dynamics PDF eBook |
Author | Joseph Pedlosky |
Publisher | Springer Science & Business Media |
Pages | 723 |
Release | 2013-12-01 |
Genre | Science |
ISBN | 1461246504 |
This second edition of the widely acclaimed Geophysical Fluid Dynamics by Joseph Pedlosky offers the reader a high-level, unified treatment of the theory of the dynamics of large-scale motions of the oceans and atmosphere. Revised and updated, it includes expanded discussions of * the fundamentals of geostrophic turbulence * the theory of wave-mean flow interaction * thermocline theory * finite amplitude barocline instability.
Atmosphere, Ocean and Climate Dynamics
Title | Atmosphere, Ocean and Climate Dynamics PDF eBook |
Author | David H. Miller |
Publisher | Academic Press |
Pages | 570 |
Release | 2013-10-22 |
Genre | Science |
ISBN | 0080959873 |
For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography.* Written at a mathematical level that is appealing for undergraduates andbeginning graduate students* Provides a useful educational tool through a combination of observations andlaboratory demonstrations which can be viewed over the web* Contains instructions on how to reproduce the simple but informativelaboratory experiments* Includes copious problems (with sample answers) to help students learn thematerial.
Motions of Ice Hydrometeors in the Atmosphere
Title | Motions of Ice Hydrometeors in the Atmosphere PDF eBook |
Author | Pao K. Wang |
Publisher | Springer Nature |
Pages | 183 |
Release | 2020-11-25 |
Genre | Science |
ISBN | 9813344318 |
This book summarizes unique research findings on the hydrodynamic behavior of ice particles (ice crystals, snow, graupel and hailstones) in the atmosphere. The fall behavior of ice hydrometeors determines how and how fast a mixed-phase cloud can grow or dissipate. The book discusses how the authors used computational fluid dynamics (CFD) methods and numerical simulations to determine these behaviors, and presents these computations along with numerous detailed tables and illustrations of turbulent flow fields. It also examines the implications of the results for the general atmospheric sciences as well as for climate science (since the cloud problem is the source of the greatest uncertainty in model-based climate predictions). As such it allows readers to gain a clear and comprehensive understanding of how particles fall in clouds and offers insights into cloud physics and dynamics and their impact on the climate..