Hydrodynamic and Differential-diffusion Effects on Premixed Flame Propagation

Hydrodynamic and Differential-diffusion Effects on Premixed Flame Propagation
Title Hydrodynamic and Differential-diffusion Effects on Premixed Flame Propagation PDF eBook
Author Changrong Cui
Publisher
Pages
Release 2003
Genre
ISBN

Download Hydrodynamic and Differential-diffusion Effects on Premixed Flame Propagation Book in PDF, Epub and Kindle

Flame propagation in gaseous mixtures generally involve two length scales: one scale is associated with the diffusion processes and characterizes the flame thickness, and the other scale is associated with the underlying flow field. When the hydrodynamic length is larger than the nominal flame thickness, the flame can be viewed as a surface of density discontinuity, advected and distorted by the flow. The analysis of the internal structure of the flame provides expressions for the flame speed and temperature and jump conditions for the velocities and pressure across the flame. The resulting hydrodynamical model is valid for flames of arbitrary shape propagating in general fluid flows, being laminar or turbulent. The present work extends earlier studies by adopting a curvilinear coordinate system attached to the flame front, thus presenting a formulation in coordinate-free form, using a two-reactant scheme thus allowing for mixtures whose compositions vary from lean to rich including stoichiometric conditions, using non-unity and general reaction orders in an attempt to mimic a wider range of reaction mechanisms, allowing all transport coefficients to depend arbitrarily on temperature in order to better represent actual experimental conditions, and incorporating volumetric heat losses which may often lead to flame extinction.

The Effects of Differential Diffusion in Counter-flow Premixed Flames with Dilution and Enrichment

The Effects of Differential Diffusion in Counter-flow Premixed Flames with Dilution and Enrichment
Title The Effects of Differential Diffusion in Counter-flow Premixed Flames with Dilution and Enrichment PDF eBook
Author Ehsan Abbasi Atibeh
Publisher
Pages
Release 2019
Genre
ISBN

Download The Effects of Differential Diffusion in Counter-flow Premixed Flames with Dilution and Enrichment Book in PDF, Epub and Kindle

"The continued combustion of fossil fuels to fulfill global energy demand is being questioned because of the well-known problem of greenhouse-gas (GHG) emissions, which introduces new carbon, in the form of carbon dioxide, into the environment causing climate change. However, the inherent advantages of combustion-based engines, e.g., energy and power densities, make it hard for other power systems to compete; hence, a leading strategy is to avoid burning fossil fuels by using alternative renewable fuels, such as hydrogen and renewable biofuels. Adaptability with alternative renewable fuels that have variable compositions is referred to as fuel flexibility, which is an important parameter of next-generation combustor design. However, fuel flexibility significantly affects combustor operability properties, such as blowout, flashback, and dynamic stability, mainly due to variations in turbulent burning rates. Changing the fuel and oxidizing-gas mixture composition affects flame characteristics and burning rates through changing: (1) mixture reactivity, which is represented by unstretched laminar flame speed, and (2) mixture diffusivity, i.e., the diffusivity of the deficient reactant and diffusivity of heat. The disparity between thermal and mass diffusivities at the flame front is known as "differential diffusion", which causes stretch sensitivity, and thermal-diffusive instabilities, in flame-front propagation, and is represented by Lewis number, a ratio of thermal-to-mass diffusivities.This thesis investigates the effects of differential diffusion and stretch sensitivity on propagation, stabilization, and structure of lean turbulent premixed flames in the thin reaction zone regime. In the context of fuel flexibility, various fuels and oxidizer-inert mixtures are used to form mixtures with distinct effective Lewis numbers, through changing both fuel diffusivity and thermal diffusivity of the mixture. In these experiments, the unstretched laminar flame speed is kept constant during mixture dilution, and hydrogen enrichment of hydrocarbon flames, through changing the mixture equivalence ratio, in order to minimize the effects of chemistry. Furthermore, bulk-flow properties and the temperature boundary condition are kept constant; hence, the study highlights the effects of differential diffusion. The experiments are carried out using strained counter-flow flames, in order to study the effects of both components of the flame stretch, i.e., hydrodynamic strain and curvature. Local instantaneous statistics of various flame parameters within the imaged plane are quantified using high-speed particle image velocimetry (PIV) and Mie scattering flame tomography at various levels of turbulence intensity. These statistics include flame location, flame velocity, and flame-front topology, such as flame stretch, flame-front curvature, and flame surface area.The statistics of various parameters of turbulent flames with distinct effective Lewis number show that the effects of differential diffusion on the burning rates and the structure of turbulent premixed flames are important in highly turbulent flames in the thin reaction zone of combustion. Furthermore, these results are not dependent on the fuel or oxidizing-gas mixture and can be described fully by the effective Lewis number and turbulence intensity. In addition, at constant turbulence intensities, differential diffusion increases the burning rate of turbulent flames in thermo-diffusively unstable mixtures through two main mechanisms: (1) increasing the local flamelet displacement velocity, and (2) increasing the flame surface area. This thesis shows the need to advance the combustion theory to produce models that can capture the effects of differential diffusion for flames in real-world combustion systems, in order to predict the performance of future fuel-flexible combustors. The experimental results of this thesis provide a valuable dataset for the validation of such theories." --

Turbulent Premixed Flames

Turbulent Premixed Flames
Title Turbulent Premixed Flames PDF eBook
Author Nedunchezhian Swaminathan
Publisher Cambridge University Press
Pages 447
Release 2011-04-25
Genre Technology & Engineering
ISBN 1139498584

Download Turbulent Premixed Flames Book in PDF, Epub and Kindle

A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Effects of Differential Diffusion on the Mutual Annihilation of Two Premixed Hydrogen-air Flames

Effects of Differential Diffusion on the Mutual Annihilation of Two Premixed Hydrogen-air Flames
Title Effects of Differential Diffusion on the Mutual Annihilation of Two Premixed Hydrogen-air Flames PDF eBook
Author Bhargav Bindiganavile Ranganath
Publisher
Pages 43
Release 2003
Genre
ISBN

Download Effects of Differential Diffusion on the Mutual Annihilation of Two Premixed Hydrogen-air Flames Book in PDF, Epub and Kindle

Keywords: mechanical engineering, flames, combustion.

Effects of Strain, Vorticity, and Turbulence on Premixed Flames

Effects of Strain, Vorticity, and Turbulence on Premixed Flames
Title Effects of Strain, Vorticity, and Turbulence on Premixed Flames PDF eBook
Author Christopher J. Rutland
Publisher
Pages 226
Release 1989
Genre
ISBN

Download Effects of Strain, Vorticity, and Turbulence on Premixed Flames Book in PDF, Epub and Kindle

The laminar flame problem is solved using a phase plane method.

Advanced Thermodynamics for Engineers

Advanced Thermodynamics for Engineers
Title Advanced Thermodynamics for Engineers PDF eBook
Author D. Winterbone
Publisher Butterworth-Heinemann
Pages 399
Release 1996-11-01
Genre Science
ISBN 0080523366

Download Advanced Thermodynamics for Engineers Book in PDF, Epub and Kindle

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.

Unsteady Combustor Physics

Unsteady Combustor Physics
Title Unsteady Combustor Physics PDF eBook
Author Tim C. Lieuwen
Publisher Cambridge University Press
Pages 427
Release 2012-08-27
Genre Technology & Engineering
ISBN 1139576836

Download Unsteady Combustor Physics Book in PDF, Epub and Kindle

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.