Hybrid Systems Based on Solid Oxide Fuel Cells
Title | Hybrid Systems Based on Solid Oxide Fuel Cells PDF eBook |
Author | Mario L. Ferrari |
Publisher | John Wiley & Sons |
Pages | 345 |
Release | 2017-06-12 |
Genre | Science |
ISBN | 1119039061 |
A comprehensive guide to the modelling and design of solid oxide fuel cell hybrid power plants This book explores all technical aspects of solid oxide fuel cell (SOFC) hybrid systems and proposes solutions to a range of technical problems that can arise from component integration. Following a general introduction to the state-of-the-art in SOFC hybrid systems, the authors focus on fuel cell technology, including the components required to operate with standard fuels. Micro-gas turbine (mGT) technology for hybrid systems is discussed, with special attention given to issues related to the coupling of SOFCs with mGTs. Throughout the book emphasis is placed on dynamic issues, including control systems used to avoid risk conditions. With an eye to mitigating the high costs and risks incurred with the building and use of prototype hybrid systems, the authors demonstrate a proven, economically feasible approach to obtaining important experimental results using simplified plants that simulate both generic and detailed system-level behaviour using emulators. Computational models and experimental plants are developed to support the analysis of SOFC hybrid systems, including models appropriate for design, development and performance analysis at both component and system levels. Presents models for a range of size units, technology variations, unit coupling dynamics and start-up and shutdown behaviours Focuses on SOFCs integration with mGTs in light of key constraints and risk avoidance issues under steady-state conditions and during transient operations Identifies interaction and coupling problems within the GT/SOFC environment, including exergy analysis and optimization Demonstrates an economical approach to obtaining important experimental results while avoiding high-cost components and risk conditions Presents analytical/computational and experimental tools for the efficient design and development of hardware and software systems Hybrid Systems Based on Solid Oxide Fuel Cells: Modelling and Design is a valuable resource for researchers and practicing engineers involved in fuel cell fundamentals, design and development. It is also an excellent reference for academic researchers and advanced-level students exploring fuel cell technology.
Hybrid Systems Based on Solid Oxide Fuel Cells
Title | Hybrid Systems Based on Solid Oxide Fuel Cells PDF eBook |
Author | Mario L. Ferrari |
Publisher | John Wiley & Sons |
Pages | 341 |
Release | 2017-08-14 |
Genre | Science |
ISBN | 1119039053 |
A comprehensive guide to the modelling and design of solid oxide fuel cell hybrid power plants This book explores all technical aspects of solid oxide fuel cell (SOFC) hybrid systems and proposes solutions to a range of technical problems that can arise from component integration. Following a general introduction to the state-of-the-art in SOFC hybrid systems, the authors focus on fuel cell technology, including the components required to operate with standard fuels. Micro-gas turbine (mGT) technology for hybrid systems is discussed, with special attention given to issues related to the coupling of SOFCs with mGTs. Throughout the book emphasis is placed on dynamic issues, including control systems used to avoid risk conditions. With an eye to mitigating the high costs and risks incurred with the building and use of prototype hybrid systems, the authors demonstrate a proven, economically feasible approach to obtaining important experimental results using simplified plants that simulate both generic and detailed system-level behaviour using emulators. Computational models and experimental plants are developed to support the analysis of SOFC hybrid systems, including models appropriate for design, development and performance analysis at both component and system levels. Presents models for a range of size units, technology variations, unit coupling dynamics and start-up and shutdown behaviours Focuses on SOFCs integration with mGTs in light of key constraints and risk avoidance issues under steady-state conditions and during transient operations Identifies interaction and coupling problems within the GT/SOFC environment, including exergy analysis and optimization Demonstrates an economical approach to obtaining important experimental results while avoiding high-cost components and risk conditions Presents analytical/computational and experimental tools for the efficient design and development of hardware and software systems Hybrid Systems Based on Solid Oxide Fuel Cells: Modelling and Design is a valuable resource for researchers and practicing engineers involved in fuel cell fundamentals, design and development. It is also an excellent reference for academic researchers and advanced-level students exploring fuel cell technology.
High-Temperature Solid Oxide Fuel Cells for the 21st Century
Title | High-Temperature Solid Oxide Fuel Cells for the 21st Century PDF eBook |
Author | Kevin Kendall |
Publisher | Elsevier |
Pages | 522 |
Release | 2015-11-21 |
Genre | Technology & Engineering |
ISBN | 0124104835 |
High-temperature Solid Oxide Fuel Cells, Second Edition, explores the growing interest in fuel cells as a sustainable source of energy. The text brings the topic of green energy front and center, illustrating the need for new books that provide comprehensive and practical information on specific types of fuel cells and their applications. This landmark volume on solid oxide fuel cells contains contributions from experts of international repute, and provides a single source of the latest knowledge on this topic. - A single source for all the latest information on solid oxide fuel cells and their applications - Illustrates the need for new, more comprehensive books and study on the topic - Explores the growing interest in fuel cells as viable, sustainable sources of energy
High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
Title | High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications PDF eBook |
Author | S.C. Singhal |
Publisher | Elsevier |
Pages | 423 |
Release | 2003-12-08 |
Genre | Technology & Engineering |
ISBN | 0080508081 |
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications provides a comprehensive discussion of solid oxide fuel cells (SOFCs). SOFCs are the most efficient devices for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity, and have been gaining increasing attention for clean and efficient distributed power generation. The book explains the operating principle, cell component materials, cell and stack designs and fabrication processes, cell and stack performance, and applications of SOFCs. Individual chapters are written by internationally renowned authors in their respective fields, and the text is supplemented by a large number of references for further information. The book is primarily intended for use by researchers, engineers, and other technical people working in the field of SOFCs. Even though the technology is advancing at a very rapid pace, the information contained in most of the chapters is fundamental enough for the book to be useful even as a text for SOFC technology at the graduate level.
Advanced Methods of Solid Oxide Fuel Cell Modeling
Title | Advanced Methods of Solid Oxide Fuel Cell Modeling PDF eBook |
Author | Jarosław Milewski |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 2011-03-04 |
Genre | Mathematics |
ISBN | 0857292625 |
Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. Advanced Methods of Solid Oxide Fuel Cell Modeling proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. Advanced Methods of Solid Oxide Fuel Cell Modeling provides a comprehensive description of modern fuel cell theory and a guide to the mathematical modeling of SOFCs, with particular emphasis on the use of ANNs. Up to now, most of the equations involved in SOFC models have required the addition of numerous factors that are difficult to determine. The artificial neural network (ANN) can be applied to simulate an object’s behavior without an algorithmic solution, merely by utilizing available experimental data. The ANN methodology discussed in Advanced Methods of Solid Oxide Fuel Cell Modeling can be used by both researchers and professionals to optimize SOFC design. Readers will have access to detailed material on universal fuel cell modeling and design process optimization, and will also be able to discover comprehensive information on fuel cells and artificial intelligence theory.
Modeling Solid Oxide Fuel Cells
Title | Modeling Solid Oxide Fuel Cells PDF eBook |
Author | Roberto Bove |
Publisher | Springer Science & Business Media |
Pages | 405 |
Release | 2008-04-20 |
Genre | Technology & Engineering |
ISBN | 1402069952 |
This book fills the need for a practical reference for all scientists and graduate students who are seeking to define a mathematical model for Solid Oxide Fuel Cell (SOFC) simulation. Structured in two parts, part one presents the basic theory, and the general equations describing SOFC operation phenomena. Part two deals with the application of the theory to practical examples, where different SOFC geometries, configurations, and different phenomena are analyzed in detail.
Solid Oxide Fuel Cells
Title | Solid Oxide Fuel Cells PDF eBook |
Author | Meng Ni |
Publisher | Royal Society of Chemistry |
Pages | 539 |
Release | 2013-08-16 |
Genre | Science |
ISBN | 1849737770 |
Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming of hydrocarbon fuels and ammonia thermal cracking can be realized in SOFC anode. This book presents an overview of the SOFC technology with a focus on the recent developments in new technologies and new ideas for addressing the key issues of SOFC development. This book first introduces the fundamental principles of SOFCs and compares SOFC technology with conventional heat engines as well as low temperature fuel cells. Then the latest developments in SOFC R&D are reviewed and future directions are discussed. Key issues related to SOFC performance improvement, long-term stability, mathematical modelling, as well as system integration/control are addressed, including material development, infiltration technique for nano-structured electrode fabrication, focused ion beam – scanning electron microscopy (FIB-SEM) technique for microstructure reconstruction, the Lattice Boltzmann Method (LBM) simulation at pore scale, multi-scale modelling, SOFC integration with buildings and other cycles for stationary applications.