Improving and Accelerating Therapeutic Development for Nervous System Disorders
Title | Improving and Accelerating Therapeutic Development for Nervous System Disorders PDF eBook |
Author | Institute of Medicine |
Publisher | National Academies Press |
Pages | 107 |
Release | 2014-02-06 |
Genre | Medical |
ISBN | 0309292492 |
Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.
IPSC Derived Progenitors
Title | IPSC Derived Progenitors PDF eBook |
Author | Alexander Birbrair |
Publisher | Elsevier |
Pages | 318 |
Release | 2021-11-12 |
Genre | Science |
ISBN | 0323855458 |
"[A]ddresses how induced pluripotent stems cells can be differentiated into distinct progenitors. Progenitors are often the first step to making more differentiating cell types. This volume addresses a variety of iPSC-derived progenitors, such as neural stem cells, craniofacial mesenchymal progenitors, astrocyte progenitors, mesothelial progenitors, keratinocyte progenitors, bone progenitors, chondrocyte progenitors, dental pulp stem cells, nephron progenitors, mesenchymal stem cells, hematopoietic stem cells, and cancer stem cells. The volume is written for researchers and scientists in stem cell therapy, cellular and molecular biology, and regenerative medicine and is contributed by world-renowned authors in the field"--Page 4 of cover.
Human iPSC-derived Disease Models for Drug Discovery
Title | Human iPSC-derived Disease Models for Drug Discovery PDF eBook |
Author | Markus H. Kuehn |
Publisher | Springer Nature |
Pages | 331 |
Release | 2023-11-23 |
Genre | Medical |
ISBN | 3031423496 |
Since their development a decade ago, human induced pluripotent stem cells (iPSC) have revolutionized the study of human disease, given rise to regenerative medicine technologies, and provided exceptional opportunities for pharmacologic research. These cells provide an essentially unlimited supply of cell types that are difficult to obtain from patients, such as neurons or cardiomyocytes, or are difficult to maintain in primary cell culture. iPSC can be obtained from patients afflicted with a particular disease but, in combination with recently developed gene editing techniques, can also be modified to generate disease models. Moreover, the new techniques of 3 Dimensional printing and materials science facilitate the generation of organoids that can mirror organs under disease conditions. These properties make iPSC powerful tools to study how diseases develop and how they may be treated. In addition, iPSC can also be used to treat conditions in which the target cell population has been lost and such regenerative approaches hold great promise for currently untreatable diseases, including cardiac failure or photoreceptor degenerations.
Drug-like Properties: Concepts, Structure Design and Methods
Title | Drug-like Properties: Concepts, Structure Design and Methods PDF eBook |
Author | Li Di |
Publisher | Elsevier |
Pages | 549 |
Release | 2010-07-26 |
Genre | Science |
ISBN | 0080557619 |
Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
Endothelial Cell Culture
Title | Endothelial Cell Culture PDF eBook |
Author | Roy Bicknell |
Publisher | Cambridge University Press |
Pages | 156 |
Release | 1996-09-28 |
Genre | Science |
ISBN | 9780521559904 |
The aim of the Handbooks in Practical Animal Cell Biology is to provide practical workbooks for those involved in primary cell culture. Each volume addresses a different cell lineage, and contains an introductory section followed by individual chapters on the culture of specific differentiated cell types. The authors of each chapter are leading researchers in their fields and use their first-hand experience to present reliable techniques in a clear and thorough manner. Endothelial Cell Culture contains chapters on endothelial cells derived from 1) lung, 2) bone marrow, 3) brain, 4) mammary glands, 5) skin, 6) adipose tissue, 7) female reproductive system, and 8) synovium.
Primary Embryonic Induction
Title | Primary Embryonic Induction PDF eBook |
Author | Lauri Saxén |
Publisher | |
Pages | 316 |
Release | 1962 |
Genre | Science |
ISBN |
Novel Biomaterials for Regenerative Medicine
Title | Novel Biomaterials for Regenerative Medicine PDF eBook |
Author | Heung Jae Chun |
Publisher | Springer |
Pages | 533 |
Release | 2018-10-24 |
Genre | Medical |
ISBN | 9811309477 |
This book explores in depth a wide range of new biomaterials that hold great promise for applications in regenerative medicine. The opening two sections are devoted to biomaterials designed to direct stem cell fate and regulate signaling pathways. Diverse novel functional biomaterials, including injectable nanocomposite hydrogels, electrosprayed nanoparticles, and waterborne polyurethane-based materials, are then discussed. The fourth section focuses on inorganic biomaterials, such as nanobioceramics, hydroxyapatite, and titanium dioxide. Finally, up-to-date information is provided on a wide range of smart natural biomaterials, ranging from silk fibroin-based scaffolds and collagen type I to chitosan, mussel-inspired biomaterials, and natural polymeric scaffolds. This is one of two books to be based on contributions from leading experts that were delivered at the 2018 Asia University Symposium on Biomedical Engineering in Seoul, Korea – the companion book examines in depth the latest enabling technologies for regenerative medicine.