Human Health and Performance Risks of Space Exploration Missions
Title | Human Health and Performance Risks of Space Exploration Missions PDF eBook |
Author | Jancy C. McPhee |
Publisher | U. S. National Aeronautics & Space Administration |
Pages | 396 |
Release | 2009 |
Genre | Biography & Autobiography |
ISBN |
Safe Passage
Title | Safe Passage PDF eBook |
Author | Institute of Medicine |
Publisher | National Academies Press |
Pages | 317 |
Release | 2001-11-20 |
Genre | Science |
ISBN | 0309170311 |
Safe Passage: Astronaut Care for Exploration Missions sets forth a vision for space medicine as it applies to deep space voyage. As space missions increase in duration from months to years and extend well beyond Earth's orbit, so will the attendant risks of working in these extreme and isolated environmental conditions. Hazards to astronaut health range from greater radiation exposure and loss of bone and muscle density to intensified psychological stress from living with others in a confined space. Going beyond the body of biomedical research, the report examines existing space medicine clinical and behavioral research and health care data and the policies attendant to them. It describes why not enough is known today about the dangers of prolonged travel to enable humans to venture into deep space in a safe and sane manner. The report makes a number of recommendations concerning NASA's structure for clinical and behavioral research, on the need for a comprehensive astronaut health care system and on an approach to communicating health and safety risks to astronauts, their families, and the public.
Psychology and Human Performance in Space Programs
Title | Psychology and Human Performance in Space Programs PDF eBook |
Author | Lauren Blackwell Landon |
Publisher | CRC Press |
Pages | 332 |
Release | 2020-10-08 |
Genre | Psychology |
ISBN | 0429804334 |
In Psychology and Human Performance in Space Programs: Research at the Frontier, leading space researchers from multiple fields of expertise summarize the recent growth of knowledge, the resulting tools and techniques, and the research still needed to protect humans in space. Making use of cutting-edge research and development related to composing, training, and supporting astronaut crews who will live and work together for future missions to Mars, this book examines the current practices of leaders in the field both at NASA and in academia. Presenting astronaut data alongside data from analogous extreme environments such as mission simulation habitats, this volume helpfully contrasts and compares to examine the lessons that can be learned from other approaches. Using the context of current International Space Station missions, the book discusses the influence of human factors and physiological health on individual and team job performance and social cohesion. With an overview of the physical and psychological hazards of space, and the challenges posed by conducting space-related applied psychology research, this volume uses the context of a long-duration Mars mission as a lens through which to discuss adaptation and resilience, technical and team training, technological advances related to working and living in space, and human interaction with onboard systems. Additionally, the book includes an essay from retired astronaut Clay Anderson on his experiences in space and thoughts on future missions to the moon and Mars. This first of two volumes will be of interest to professionals in the field of human factors and psychology at work, as well as academics examining human performance in extreme environments and aerospace.
Recapturing a Future for Space Exploration
Title | Recapturing a Future for Space Exploration PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 464 |
Release | 2012-01-30 |
Genre | Science |
ISBN | 0309163846 |
More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.
Human Health and Performance Risks of Space Exploration Missions
Title | Human Health and Performance Risks of Space Exploration Missions PDF eBook |
Author | Jancy C. McPhee |
Publisher | |
Pages | 389 |
Release | 2009 |
Genre | Astronauts |
ISBN | 9780160846342 |
Benefits Stemming from Space Exploration
Title | Benefits Stemming from Space Exploration PDF eBook |
Author | Isecg |
Publisher | |
Pages | 26 |
Release | 2013-10-24 |
Genre | |
ISBN | 9781457849091 |
Anthropometry and Biomechanics
Title | Anthropometry and Biomechanics PDF eBook |
Author | Ronald Easterby |
Publisher | Springer Science & Business Media |
Pages | 310 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1468410989 |
Assessment of the physical dimensions of the human body and application of this knowledge to the design of tools, equip ment, and work are certainly among the oldest arts and sciences. It would be an easy task if all anthropometric dimensions, of all people, would follow a general rule. Thus, philosophers and artists embedded their ideas about the most aesthetic proportions into ideal schemes of perfect proportions. "Golden sections" were developed in ancient India, China, Egypt, and Greece, and more recently by Leonardo DaVinci, or Albrecht Durer. However, such canons are fictive since actual human dimensions and proportions vary greatly among individuals. The different physical appearances often have been associated with mental, physiological and behavioral characteristics of the individuals. Hypocrates (about 460-377 BC) taught that there are four temperaments (actually, body fluids) represented by four body types. The psychiatrist Ernst Kretchmer (1888-1964) proposed that three typical somatotypes (pyknic, athletic, aesthenic) could reflect human character traits. Since the 1940's, W. H. Sheldon and his coworkers devised a system of three body physiques (endo-, meso-, ectomorphic). The classification was originally qualitative, and only recently has been developed to include actual measurements.