Hot Electrons in Semiconductors
Title | Hot Electrons in Semiconductors PDF eBook |
Author | N. Balkan |
Publisher | |
Pages | 536 |
Release | 1998 |
Genre | Science |
ISBN | 9780198500582 |
Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.
Hot-Electron Transport in Semiconductors
Title | Hot-Electron Transport in Semiconductors PDF eBook |
Author | L. Reggiani |
Publisher | Springer Science & Business Media |
Pages | 288 |
Release | 2006-01-20 |
Genre | Technology & Engineering |
ISBN | 3540388494 |
Hot-Electron Transport in Semiconductors (Topics in Applied Physics).
Physics of Hot Electron Transport in Semiconductors
Title | Physics of Hot Electron Transport in Semiconductors PDF eBook |
Author | Chin Sen Ting |
Publisher | World Scientific |
Pages | 336 |
Release | 1992 |
Genre | Science |
ISBN | 9789810210083 |
This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.
Plasma and Current Instabilities in Semiconductors
Title | Plasma and Current Instabilities in Semiconductors PDF eBook |
Author | Juras Pozhela |
Publisher | Elsevier |
Pages | 319 |
Release | 2017-05-03 |
Genre | Science |
ISBN | 1483189384 |
Plasma and Current Instabilities in Semiconductors details the main ideas in the physics of plasma and current instabilities in semiconductors. The title first covers plasma in semiconductors, and then proceeds to tackling waves in plasma. Next, the selection details wave instabilities in plasma and drift instabilities. The text also discusses hot electrons, along with the instabilities due to inter-valley electron transfer. The next chapters talks about avalanche and recombination instabilities. The last chapter deals with plasma streams. The book will be of great use to student and professional electronics engineers and technicians.
Physics of Nonlinear Transport in Semiconductors
Title | Physics of Nonlinear Transport in Semiconductors PDF eBook |
Author | David K. Ferry |
Publisher | Springer Science & Business Media |
Pages | 620 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1468436384 |
The area of high field transport in semiconductors has been of interest since the early studies of dielectric breakdown in various materials. It really emerged as a sub-discipline of semiconductor physics in the early 1960's, following the discovery of substantial deviations from Ohm's law at high electric fields. Since that time, it has become a major area of importance in solid state electronics as semiconductor devices have operated at higher frequencies and higher powers. It has become apparent since the Modena Conference on Hot Electrons in 1973, that the area of hot electrons has ex tended weIl beyond the concept of semi-classical electrons (or holes) in homogeneous semiconductor materials. This was exemplified by the broad range of papers presented at the International Conference on Hot Electrons in Semiconductors, held in Denton, Texas, in 1977. Hot electron physics has progressed from a limited phenomeno logical science to a full-fledged experimental and precision theo retical science. The conceptual base and subsequent applications have been widened and underpinned by the development of ab initio nonlinear quantum transport theory which complements and identifies the limitations of the traditional semi-classical Boltzmann-Bloch picture. Such diverse areas as large polarons, pico-second laser excitation, quantum magneto-transport, sub-three dimensional systems, and of course device dynamics all have been shown to be strongly interactive with more classical hot electron pictures.
Rational Design of Solar Cells for Efficient Solar Energy Conversion
Title | Rational Design of Solar Cells for Efficient Solar Energy Conversion PDF eBook |
Author | Alagarsamy Pandikumar |
Publisher | John Wiley & Sons |
Pages | 396 |
Release | 2018-10-09 |
Genre | Science |
ISBN | 1119437407 |
An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.
Advanced Theory of Semiconductor Devices
Title | Advanced Theory of Semiconductor Devices PDF eBook |
Author | Karl Hess |
Publisher | Wiley-IEEE Press |
Pages | 360 |
Release | 2000 |
Genre | Technology & Engineering |
ISBN |
Electrical Engineering Advanced Theory of Semiconductor Devices Semiconductor devices are ubiquitous in today’s world and are found increasingly in cars, kitchens and electronic door locks, attesting to their presence in our daily lives. This comprehensive book provides the fundamentals of semiconductor device theory from basic quantum physics to computer-aided design. Advanced Theory of Semiconductor Devices will improve your understanding of computer simulation of devices through a thorough discussion of basic equations, their validity, and numerical solutions as they are contained in current simulation tools. You will gain state-of-the-art knowledge of devices used in both III–V compounds and silicon technology. Specially featured are novel approaches and explanations of electronic transport, particularly in p—n junction diodes. Close attention is also given to innovative treatments of quantum-well laser diodes and hot electron effects in silicon technology. This in-depth book is written for engineers, graduate students, and research scientists in solid-state electronics who want to gain a better understanding of the principles underlying semiconductor devices.