Hot-Electron Transport in Semiconductors

Hot-Electron Transport in Semiconductors
Title Hot-Electron Transport in Semiconductors PDF eBook
Author L. Reggiani
Publisher Springer Science & Business Media
Pages 288
Release 2006-01-20
Genre Technology & Engineering
ISBN 3540388494

Download Hot-Electron Transport in Semiconductors Book in PDF, Epub and Kindle

Hot-Electron Transport in Semiconductors (Topics in Applied Physics).

Physics of Hot Electron Transport in Semiconductors

Physics of Hot Electron Transport in Semiconductors
Title Physics of Hot Electron Transport in Semiconductors PDF eBook
Author Chin Sen Ting
Publisher World Scientific
Pages 336
Release 1992
Genre Science
ISBN 9789810210083

Download Physics of Hot Electron Transport in Semiconductors Book in PDF, Epub and Kindle

This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.

Hot Electrons in Semiconductors

Hot Electrons in Semiconductors
Title Hot Electrons in Semiconductors PDF eBook
Author N. Balkan
Publisher
Pages 536
Release 1998
Genre Science
ISBN 9780198500582

Download Hot Electrons in Semiconductors Book in PDF, Epub and Kindle

Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.

Electron Transport in Compound Semiconductors

Electron Transport in Compound Semiconductors
Title Electron Transport in Compound Semiconductors PDF eBook
Author B.R. Nag
Publisher Springer Science & Business Media
Pages 476
Release 2012-12-06
Genre Science
ISBN 3642814166

Download Electron Transport in Compound Semiconductors Book in PDF, Epub and Kindle

Discovery of new transport phenomena and invention of electron devices through exploitation of these phenomena have caused a great deal of interest in the properties of compound semiconductors in recent years. Extensive re search has been devoted to the accumulation of experimental results, par ticularly about the artificially synthesised compounds. Significant ad vances have also been made in the improvement of the related theory so that the values of the various transport coefficients may be calculated with suf ficient accuracy by taking into account all the complexities of energy band structure and electron scattering mechanisms. Knowledge about these deve lopments may, however, be gathered only from original research contributions, scattered in scientific journals and conference proceedings. Review articles have been published from time to time, but they deal with one particular material or a particular phenomenon and are written at an advanced level. Available text books on semiconductor physics, do not cover the subject in any detail since many of them were written decades ago. There is, there fore, a definite need for a book, giving a comprehensive account of electron transport in compound semiconductors and covering the introductory material as well as the current work. The present book is an attempt to fill this gap in the literature. The first chapter briefly reviews the history of the developement of compound semiconductors and their applications. It is also an introduction to the contents of the book.

Hot Carriers in Semiconductors

Hot Carriers in Semiconductors
Title Hot Carriers in Semiconductors PDF eBook
Author FERRY
Publisher IOP Publishing Limited
Pages 350
Release 2021-12-24
Genre Technology & Engineering
ISBN 9780750339452

Download Hot Carriers in Semiconductors Book in PDF, Epub and Kindle

This research and reference text provides up-to-date coverage of the latest research on hot carriers in semiconductors, with a focus on the background, theoretical approaches, measurements and physical understanding required to engage with the field. Pitched at an introductory level, it equips researchers transitioning from optics to fully understand the role of hot carriers in semiconductors, and is a core text for graduate courses in hot carrier phenomena.

Introduction to Nanoelectronics

Introduction to Nanoelectronics
Title Introduction to Nanoelectronics PDF eBook
Author Vladimir V. Mitin
Publisher Cambridge University Press
Pages 346
Release 2008
Genre Technology & Engineering
ISBN 0521881722

Download Introduction to Nanoelectronics Book in PDF, Epub and Kindle

A comprehensive textbook on nanoelectronics covering the underlying physics, nanostructures, nanomaterials and nanodevices.

Physics of Nonlinear Transport in Semiconductors

Physics of Nonlinear Transport in Semiconductors
Title Physics of Nonlinear Transport in Semiconductors PDF eBook
Author David K. Ferry
Publisher Springer Science & Business Media
Pages 620
Release 2012-12-06
Genre Technology & Engineering
ISBN 1468436384

Download Physics of Nonlinear Transport in Semiconductors Book in PDF, Epub and Kindle

The area of high field transport in semiconductors has been of interest since the early studies of dielectric breakdown in various materials. It really emerged as a sub-discipline of semiconductor physics in the early 1960's, following the discovery of substantial deviations from Ohm's law at high electric fields. Since that time, it has become a major area of importance in solid state electronics as semiconductor devices have operated at higher frequencies and higher powers. It has become apparent since the Modena Conference on Hot Electrons in 1973, that the area of hot electrons has ex tended weIl beyond the concept of semi-classical electrons (or holes) in homogeneous semiconductor materials. This was exemplified by the broad range of papers presented at the International Conference on Hot Electrons in Semiconductors, held in Denton, Texas, in 1977. Hot electron physics has progressed from a limited phenomeno logical science to a full-fledged experimental and precision theo retical science. The conceptual base and subsequent applications have been widened and underpinned by the development of ab initio nonlinear quantum transport theory which complements and identifies the limitations of the traditional semi-classical Boltzmann-Bloch picture. Such diverse areas as large polarons, pico-second laser excitation, quantum magneto-transport, sub-three dimensional systems, and of course device dynamics all have been shown to be strongly interactive with more classical hot electron pictures.