Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects

Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects
Title Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects PDF eBook
Author Frank Neumann
Publisher Springer Nature
Pages 223
Release 2021-09-29
Genre Mathematics
ISBN 3030789772

Download Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects Book in PDF, Epub and Kindle

This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.

Elements of Homotopy Theory

Elements of Homotopy Theory
Title Elements of Homotopy Theory PDF eBook
Author George W. Whitehead
Publisher Springer Science & Business Media
Pages 764
Release 2012-12-06
Genre Mathematics
ISBN 1461263182

Download Elements of Homotopy Theory Book in PDF, Epub and Kindle

As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.

Introduction to Homotopy Theory

Introduction to Homotopy Theory
Title Introduction to Homotopy Theory PDF eBook
Author Martin Arkowitz
Publisher Springer Science & Business Media
Pages 352
Release 2011-07-25
Genre Mathematics
ISBN 144197329X

Download Introduction to Homotopy Theory Book in PDF, Epub and Kindle

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Algebraic Topology - Homotopy and Homology

Algebraic Topology - Homotopy and Homology
Title Algebraic Topology - Homotopy and Homology PDF eBook
Author Robert M. Switzer
Publisher Springer
Pages 541
Release 2017-12-01
Genre Mathematics
ISBN 3642619231

Download Algebraic Topology - Homotopy and Homology Book in PDF, Epub and Kindle

From the reviews: "The author has attempted an ambitious and most commendable project. [...] The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. [...] This book is, all in all, a very admirable work and a valuable addition to the literature." Mathematical Reviews

Basic Concepts of Algebraic Topology

Basic Concepts of Algebraic Topology
Title Basic Concepts of Algebraic Topology PDF eBook
Author F.H. Croom
Publisher Springer Science & Business Media
Pages 187
Release 2012-12-06
Genre Mathematics
ISBN 1468494759

Download Basic Concepts of Algebraic Topology Book in PDF, Epub and Kindle

This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.

Triangulated Categories of Mixed Motives

Triangulated Categories of Mixed Motives
Title Triangulated Categories of Mixed Motives PDF eBook
Author Denis-Charles Cisinski
Publisher Springer Nature
Pages 442
Release 2019-11-09
Genre Mathematics
ISBN 303033242X

Download Triangulated Categories of Mixed Motives Book in PDF, Epub and Kindle

The primary aim of this monograph is to achieve part of Beilinson’s program on mixed motives using Voevodsky’s theories of A1-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with rational coefficients satisfying the full Grothendieck six functors formalism as well as fulfilling Beilinson’s program, in particular the interpretation of rational higher Chow groups as extension groups. Apart from Voevodsky’s entire work and Grothendieck’s SGA4, our main sources are Gabber’s work on étale cohomology and Ayoub’s solution to Voevodsky’s cross functors theory. We also thoroughly develop the theory of motivic complexes with integral coefficients over general bases, along the lines of Suslin and Voevodsky. Besides this achievement, this volume provides a complete toolkit for the study of systems of coefficients satisfying Grothendieck’ six functors formalism, including Grothendieck-Verdier duality. It gives a systematic account of cohomological descent theory with an emphasis on h-descent. It formalizes morphisms of coefficient systems with a view towards realization functors and comparison results. The latter allows to understand the polymorphic nature of rational mixed motives. They can be characterized by one of the following properties: existence of transfers, universality of rational algebraic K-theory, h-descent, étale descent, orientation theory. This monograph is a longstanding research work of the two authors. The first three parts are written in a self-contained manner and could be accessible to graduate students with a background in algebraic geometry and homotopy theory. It is designed to be a reference work and could also be useful outside motivic homotopy theory. The last part, containing the most innovative results, assumes some knowledge of motivic homotopy theory, although precise statements and references are given.

Higher Categories and Homotopical Algebra

Higher Categories and Homotopical Algebra
Title Higher Categories and Homotopical Algebra PDF eBook
Author Denis-Charles Cisinski
Publisher Cambridge University Press
Pages 449
Release 2019-05-02
Genre Mathematics
ISBN 1108473202

Download Higher Categories and Homotopical Algebra Book in PDF, Epub and Kindle

At last, a friendly introduction to modern homotopy theory after Joyal and Lurie, reaching advanced tools and starting from scratch.