Homotopical Algebra
Title | Homotopical Algebra PDF eBook |
Author | Daniel G. Quillen |
Publisher | Springer |
Pages | 165 |
Release | 2006-11-14 |
Genre | Mathematics |
ISBN | 3540355235 |
Abstract Homotopy And Simple Homotopy Theory
Title | Abstract Homotopy And Simple Homotopy Theory PDF eBook |
Author | K Heiner Kamps |
Publisher | World Scientific |
Pages | 476 |
Release | 1997-04-11 |
Genre | Mathematics |
ISBN | 9814502553 |
The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory).
Higher Categories and Homotopical Algebra
Title | Higher Categories and Homotopical Algebra PDF eBook |
Author | Denis-Charles Cisinski |
Publisher | Cambridge University Press |
Pages | 449 |
Release | 2019-05-02 |
Genre | Mathematics |
ISBN | 1108473202 |
At last, a friendly introduction to modern homotopy theory after Joyal and Lurie, reaching advanced tools and starting from scratch.
Algebraic Topology from a Homotopical Viewpoint
Title | Algebraic Topology from a Homotopical Viewpoint PDF eBook |
Author | Marcelo Aguilar |
Publisher | Springer Science & Business Media |
Pages | 499 |
Release | 2008-02-02 |
Genre | Mathematics |
ISBN | 0387224890 |
The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology.
Motivic Homotopy Theory
Title | Motivic Homotopy Theory PDF eBook |
Author | Bjorn Ian Dundas |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 2007-07-11 |
Genre | Mathematics |
ISBN | 3540458972 |
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Categorical Homotopy Theory
Title | Categorical Homotopy Theory PDF eBook |
Author | Emily Riehl |
Publisher | Cambridge University Press |
Pages | 371 |
Release | 2014-05-26 |
Genre | Mathematics |
ISBN | 1139952633 |
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Homotopy Type Theory: Univalent Foundations of Mathematics
Title | Homotopy Type Theory: Univalent Foundations of Mathematics PDF eBook |
Author | |
Publisher | Univalent Foundations |
Pages | 484 |
Release | |
Genre | |
ISBN |