Homogenization of Differential Operators and Integral Functionals

Homogenization of Differential Operators and Integral Functionals
Title Homogenization of Differential Operators and Integral Functionals PDF eBook
Author Vasiliĭ Vasilʹevich Zhikov
Publisher Springer
Pages 590
Release 1994
Genre Mathematics
ISBN

Download Homogenization of Differential Operators and Integral Functionals Book in PDF, Epub and Kindle

This extensive study of the theory of the homogenization of partial differential equations explores solutions to the problems which arise in mathematics, science and engineering. The reference aims to provide the basis for new research devoted to these problems.

Homogenization of Differential Operators and Integral Functionals

Homogenization of Differential Operators and Integral Functionals
Title Homogenization of Differential Operators and Integral Functionals PDF eBook
Author V.V. Jikov
Publisher Springer Science & Business Media
Pages 583
Release 2012-12-06
Genre Mathematics
ISBN 3642846599

Download Homogenization of Differential Operators and Integral Functionals Book in PDF, Epub and Kindle

It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.

Homogenization of Differential Operators and Integral Functionals

Homogenization of Differential Operators and Integral Functionals
Title Homogenization of Differential Operators and Integral Functionals PDF eBook
Author V.V. Jikov
Publisher Springer
Pages 570
Release 1994-09-08
Genre Mathematics
ISBN 9783540548096

Download Homogenization of Differential Operators and Integral Functionals Book in PDF, Epub and Kindle

It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.

Homogenization of Differential Operators and Integral Functionals

Homogenization of Differential Operators and Integral Functionals
Title Homogenization of Differential Operators and Integral Functionals PDF eBook
Author V V Jikov
Publisher
Pages 588
Release 1994-09-08
Genre
ISBN 9783642846601

Download Homogenization of Differential Operators and Integral Functionals Book in PDF, Epub and Kindle

This book is an extensive study of the theory of homogenization of partial differential equations. This theory has become increasingly important in the last two decades and it forms the basis for numerous branches of physics like the mechanics of composite and perforated materials, filtration and disperse media. The book contains new methods to study homogenization problems, which arise in mathematics, science and engineering. It provides the basis for new research devoted to these problems and it is the first comprehensive monograph in this field. It will become an indispensable reference for graduate students in mathematics, physics and engineering.

Homogenization of Multiple Integrals

Homogenization of Multiple Integrals
Title Homogenization of Multiple Integrals PDF eBook
Author Andrea Braides
Publisher Oxford University Press
Pages 322
Release 1998
Genre Mathematics
ISBN 9780198502463

Download Homogenization of Multiple Integrals Book in PDF, Epub and Kindle

An introduction to the mathematical theory of the homogenization of multiple integrals, this book describes the overall properties of such functionals with various applications ranging from cellular elastic materials to Riemannian metrics.

G-Convergence and Homogenization of Nonlinear Partial Differential Operators

G-Convergence and Homogenization of Nonlinear Partial Differential Operators
Title G-Convergence and Homogenization of Nonlinear Partial Differential Operators PDF eBook
Author A.A. Pankov
Publisher Springer Science & Business Media
Pages 269
Release 2013-04-17
Genre Mathematics
ISBN 9401589577

Download G-Convergence and Homogenization of Nonlinear Partial Differential Operators Book in PDF, Epub and Kindle

Various applications of the homogenization theory of partial differential equations resulted in the further development of this branch of mathematics, attracting an increasing interest of both mathematicians and experts in other fields. In general, the theory deals with the following: Let Ak be a sequence of differential operators, linear or nonlinepr. We want to examine the asymptotic behaviour of solutions uk to the equation Auk = f, as k ~ =, provided coefficients of Ak contain rapid oscillations. This is the case, e. g. when the coefficients are of the form a(e/x), where the function a(y) is periodic and ek ~ 0 ask~=. Of course, of oscillation, like almost periodic or random homogeneous, are of many other kinds interest as well. It seems a good idea to find a differential operator A such that uk ~ u, where u is a solution of the limit equation Au = f Such a limit operator is usually called the homogenized operator for the sequence Ak . Sometimes, the term "averaged" is used instead of "homogenized". Let us look more closely what kind of convergence one can expect for uk. Usually, we have some a priori bound for the solutions. However, due to the rapid oscillations of the coefficients, such a bound may be uniform with respect to k in the corresponding energy norm only. Therefore, we may have convergence of solutions only in the weak topology of the energy space.

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016
Title Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 PDF eBook
Author Marco L. Bittencourt
Publisher Springer
Pages 681
Release 2017-11-07
Genre Mathematics
ISBN 3319658700

Download Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 Book in PDF, Epub and Kindle

This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.