Holt Chemfile C Inquiry Exp/Tg 2006

Holt Chemfile C Inquiry Exp/Tg 2006
Title Holt Chemfile C Inquiry Exp/Tg 2006 PDF eBook
Author Holt Rinehart & Winston
Publisher Holt McDougal
Pages 212
Release 2006
Genre Science
ISBN 9780030368035

Download Holt Chemfile C Inquiry Exp/Tg 2006 Book in PDF, Epub and Kindle

Holt Chemfile B Microscale Exp/Te 2006

Holt Chemfile B Microscale Exp/Te 2006
Title Holt Chemfile B Microscale Exp/Te 2006 PDF eBook
Author Holt Rinehart & Winston
Publisher
Pages 180
Release 2006
Genre Science
ISBN 9780030368011

Download Holt Chemfile B Microscale Exp/Te 2006 Book in PDF, Epub and Kindle

Zeolites in Catalysis

Zeolites in Catalysis
Title Zeolites in Catalysis PDF eBook
Author Jiří Čejka
Publisher Royal Society of Chemistry
Pages 547
Release 2017-06-07
Genre Science
ISBN 1782627847

Download Zeolites in Catalysis Book in PDF, Epub and Kindle

Accessible references for researchers and industrialists in this exciting field, covering both developments and applications of catalysis.

Zeolites and Zeolite-like Materials

Zeolites and Zeolite-like Materials
Title Zeolites and Zeolite-like Materials PDF eBook
Author Bert Sels
Publisher Elsevier
Pages 475
Release 2016-07-29
Genre Technology & Engineering
ISBN 0444635149

Download Zeolites and Zeolite-like Materials Book in PDF, Epub and Kindle

Zeolites and Zeolite-like Materials offers a comprehensive and up-to-date review of the important areas of zeolite synthesis, characterization, and applications. Its chapters are written in an educational, easy-to-understand format for a generation of young zeolite chemists, especially those who are just starting research on the topic and need a reference that not only reflects the current state of zeolite research, but also identifies gaps and opportunities. The book demonstrates various applications of zeolites in heterogeneous catalysis and biomass conversion and identifies the endless possibilities that exist for this class of materials, their structures, functions, and future applications. In addition, it demonstrates that zeolite-like materials should be regarded as a living body developing towards new modern applications, thereby responding to the needs of modern technology challenges, including biomass conversion, medicine, laser techniques, and nanomaterial design, etc. The book will be of interest not only to zeolite-focused researchers, but also to a broad scientific and non-scientific audience. Provides a comprehensive review of the literature pertaining to zeolites and zeolite-like materials since 2000 Covers the chemistry of novel zeolite-like materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), hierarchical zeolite materials, new mesoporous and composite zeolite-like micro/mesoporous materials Presents essential information of the new zeolite-like structures, with a balanced coverage of the most important areas of the zeolite research (synthesis, characterization, adsorption, catalysis, new applications of zeolites and zeolite-like materials) Contains chapters prepared by known specialists who are members of the International Zeolite Association

Molecular Electronic-Structure Theory

Molecular Electronic-Structure Theory
Title Molecular Electronic-Structure Theory PDF eBook
Author Trygve Helgaker
Publisher John Wiley & Sons
Pages 949
Release 2014-08-11
Genre Science
ISBN 1119019559

Download Molecular Electronic-Structure Theory Book in PDF, Epub and Kindle

Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.

The Fragment Molecular Orbital Method

The Fragment Molecular Orbital Method
Title The Fragment Molecular Orbital Method PDF eBook
Author Dmitri Fedorov
Publisher CRC Press
Pages 304
Release 2009-05-14
Genre Science
ISBN 1420078496

Download The Fragment Molecular Orbital Method Book in PDF, Epub and Kindle

Answering the need to facilitate quantum-chemical calculations of systems with thousands of atoms, Kazuo Kitaura and his coworkers developed the Fragment Molecular Orbital (FMO) method in 1999. Today, the FMO method can be applied to the study of whole proteins and protein-ligand interactions, and is extremely effective in calculating the propertie

Machine Learning Meets Quantum Physics

Machine Learning Meets Quantum Physics
Title Machine Learning Meets Quantum Physics PDF eBook
Author Kristof T. Schütt
Publisher Springer Nature
Pages 473
Release 2020-06-03
Genre Science
ISBN 3030402452

Download Machine Learning Meets Quantum Physics Book in PDF, Epub and Kindle

Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.