High-Dimensional Single Cell Analysis

High-Dimensional Single Cell Analysis
Title High-Dimensional Single Cell Analysis PDF eBook
Author Harris G. Fienberg
Publisher Springer
Pages 224
Release 2014-04-22
Genre Medical
ISBN 364254827X

Download High-Dimensional Single Cell Analysis Book in PDF, Epub and Kindle

This volume highlights the most interesting biomedical and clinical applications of high-dimensional flow and mass cytometry. It reviews current practical approaches used to perform high-dimensional experiments and addresses key bioinformatic techniques for the analysis of data sets involving dozens of parameters in millions of single cells. Topics include single cell cancer biology; studies of the human immunome; exploration of immunological cell types such as CD8+ T cells; decipherment of signaling processes of cancer; mass-tag cellular barcoding; analysis of protein interactions by proximity ligation assays; Cytobank, a platform for the analysis of cytometry data; computational analysis of high-dimensional flow cytometric data; computational deconvolution approaches for the description of intracellular signaling dynamics and hyperspectral cytometry. All 10 chapters of this book have been written by respected experts in their fields. It is an invaluable reference book for both basic and clinical researchers.

Single Cell Sequencing and Systems Immunology

Single Cell Sequencing and Systems Immunology
Title Single Cell Sequencing and Systems Immunology PDF eBook
Author Xiangdong Wang
Publisher Springer
Pages 184
Release 2015-03-27
Genre Medical
ISBN 9401797536

Download Single Cell Sequencing and Systems Immunology Book in PDF, Epub and Kindle

The volume focuses on the genomics, proteomics, metabolomics, and bioinformatics of a single cell, especially lymphocytes and on understanding the molecular mechanisms of systems immunology. Based on the author’s personal experience, it provides revealing insights into the potential applications, significance, workflow, comparison, future perspectives and challenges of single-cell sequencing for identifying and developing disease-specific biomarkers in order to understand the biological function, activation and dysfunction of single cells and lymphocytes and to explore their functional roles and responses to therapies. It also provides detailed information on individual subgroups of lymphocytes, including cell characters, function, surface markers, receptor function, intracellular signals and pathways, production of inflammatory mediators, nuclear receptors and factors, omics, sequencing, disease-specific biomarkers, bioinformatics, networks and dynamic networks, their role in disease and future prospects. Dr. Xiangdong Wang is a Professor of Medicine, Director of Shanghai Institute of Clinical Bioinformatics, Director of Fudan University Center for Clinical Bioinformatics, Director of the Biomedical Research Center of Zhongshan Hospital, Deputy Director of Shanghai Respiratory Research Institute, Shanghai, China.

Genes & Signals

Genes & Signals
Title Genes & Signals PDF eBook
Author Mark Ptashne
Publisher CSHL Press
Pages 212
Release 2002
Genre Medical
ISBN 9780879696337

Download Genes & Signals Book in PDF, Epub and Kindle

P. 103.

Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis
Title Kernel Methods for Pattern Analysis PDF eBook
Author John Shawe-Taylor
Publisher Cambridge University Press
Pages 520
Release 2004-06-28
Genre Computers
ISBN 9780521813976

Download Kernel Methods for Pattern Analysis Book in PDF, Epub and Kindle

Publisher Description

Analysis and Control of Cellular Ensembles. Exploiting dimensionality reduction in single-cell data and models

Analysis and Control of Cellular Ensembles. Exploiting dimensionality reduction in single-cell data and models
Title Analysis and Control of Cellular Ensembles. Exploiting dimensionality reduction in single-cell data and models PDF eBook
Author Karsten Kuritz
Publisher Logos Verlag Berlin GmbH
Pages 150
Release 2020-11-20
Genre Language Arts & Disciplines
ISBN 383255209X

Download Analysis and Control of Cellular Ensembles. Exploiting dimensionality reduction in single-cell data and models Book in PDF, Epub and Kindle

An ensemble system is a collection of nearly identical dynamical systems which admit a certain degree of heterogeneity, and which are subject to the restriction that they may only be manipulated or observed as a whole. This thesis presents analysis and control methods for cellular ensembles by considering reduced 1-dimensional dynamics of biological processes in high-dimensional single-cell data and models. To be more specific, we address the quest for real-time analysis of biological processes within single-cell data by introducing the measure-preserving map of pseudotime into real-time, in short MAPiT. MAPiT enables the reconstruction of temporal and spatial dynamics from single-cell snapshot experiments. In addition, we propose a PDE-constrained learning algorithm which allows for efficient inference of changes in cell cycle progression from time series single-cell snapshot data. The second part of this thesis, is devoted to controlling a heterogeneous cell population, in the sense, that we aim at achieving a desired distribution of cellular oscillators on their periodic orbit. A systems theoretic approach to the ensemble control problem provides novel necessary and sufficient conditions for the control of phase distributions in terms of the Fourier coefficients of the phase response curve. This thesis establishes a connection between the previously separate areas of single cell analysis and ensemble control. Our holistic view opens new perspectives for theoretic concepts in basic research and therapeutic strategies in precision medicine.

Computational Methods for Single-Cell Data Analysis

Computational Methods for Single-Cell Data Analysis
Title Computational Methods for Single-Cell Data Analysis PDF eBook
Author Guo-Cheng Yuan
Publisher Humana Press
Pages 271
Release 2019-02-14
Genre Science
ISBN 9781493990566

Download Computational Methods for Single-Cell Data Analysis Book in PDF, Epub and Kindle

This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.

Introduction to High-Dimensional Statistics

Introduction to High-Dimensional Statistics
Title Introduction to High-Dimensional Statistics PDF eBook
Author Christophe Giraud
Publisher CRC Press
Pages 410
Release 2021-08-25
Genre Computers
ISBN 1000408353

Download Introduction to High-Dimensional Statistics Book in PDF, Epub and Kindle

Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.