High Dimensional Probability IX

High Dimensional Probability IX
Title High Dimensional Probability IX PDF eBook
Author Radosław Adamczak
Publisher Springer Nature
Pages 445
Release 2023-06-05
Genre Mathematics
ISBN 3031269799

Download High Dimensional Probability IX Book in PDF, Epub and Kindle

This volume collects selected papers from the Ninth High Dimensional Probability Conference, held virtually from June 15-19, 2020. These papers cover a wide range of topics and demonstrate how high-dimensional probability remains an active area of research with applications across many mathematical disciplines. Chapters are organized around four general topics: inequalities and convexity; limit theorems; stochastic processes; and high-dimensional statistics. High Dimensional Probability IX will be a valuable resource for researchers in this area.

High Dimensional Probability

High Dimensional Probability
Title High Dimensional Probability PDF eBook
Author Evarist Giné
Publisher IMS
Pages 288
Release 2006
Genre Mathematics
ISBN 9780940600676

Download High Dimensional Probability Book in PDF, Epub and Kindle

High-Dimensional Probability

High-Dimensional Probability
Title High-Dimensional Probability PDF eBook
Author Roman Vershynin
Publisher Cambridge University Press
Pages 299
Release 2018-09-27
Genre Mathematics
ISBN 1108244548

Download High-Dimensional Probability Book in PDF, Epub and Kindle

High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.

High Dimensional Probability VIII

High Dimensional Probability VIII
Title High Dimensional Probability VIII PDF eBook
Author Nathael Gozlan
Publisher Springer Nature
Pages 457
Release 2019-11-26
Genre Mathematics
ISBN 3030263916

Download High Dimensional Probability VIII Book in PDF, Epub and Kindle

This volume collects selected papers from the 8th High Dimensional Probability meeting held at Casa Matemática Oaxaca (CMO), Mexico. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, random graphs, information theory and convex geometry. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.

High-Dimensional Probability

High-Dimensional Probability
Title High-Dimensional Probability PDF eBook
Author Roman Vershynin
Publisher Cambridge University Press
Pages 299
Release 2018-09-27
Genre Business & Economics
ISBN 1108415199

Download High-Dimensional Probability Book in PDF, Epub and Kindle

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

High Dimensional Probability III

High Dimensional Probability III
Title High Dimensional Probability III PDF eBook
Author Joergen Hoffmann-Joergensen
Publisher Birkhäuser
Pages 343
Release 2012-12-06
Genre Mathematics
ISBN 3034880596

Download High Dimensional Probability III Book in PDF, Epub and Kindle

The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s. Many of the problems that motivated researchers at that time were solved. But the powerful new tools created for their solution turned out to be applicable to other important areas of probability. They led to significant advances in the study of empirical processes and other topics in theoretical statistics and to a new approach to the study of aspects of Lévy processes and Markov processes in general. The papers in this book reflect these broad categories. The volume thus will be a valuable resource for postgraduates and reseachers in probability theory and mathematical statistics.

High Dimensional Probability VI

High Dimensional Probability VI
Title High Dimensional Probability VI PDF eBook
Author Christian Houdré
Publisher Springer Science & Business Media
Pages 372
Release 2013-04-19
Genre Mathematics
ISBN 3034804903

Download High Dimensional Probability VI Book in PDF, Epub and Kindle

This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory. The papers in this volume show that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.​