Hierarchical Bayesian Optimization Algorithm
Title | Hierarchical Bayesian Optimization Algorithm PDF eBook |
Author | Martin Pelikan |
Publisher | Springer Science & Business Media |
Pages | 194 |
Release | 2005-02 |
Genre | Computers |
ISBN | 9783540237747 |
This book provides a framework for the design of competent optimization techniques by combining advanced evolutionary algorithms with state-of-the-art machine learning techniques. The book focuses on two algorithms that replace traditional variation operators of evolutionary algorithms by learning and sampling Bayesian networks: the Bayesian optimization algorithm (BOA) and the hierarchical BOA (hBOA). BOA and hBOA are theoretically and empirically shown to provide robust and scalable solution for broad classes of nearly decomposable and hierarchical problems. A theoretical model is developed that estimates the scalability and adequate parameter settings for BOA and hBOA. The performance of BOA and hBOA is analyzed on a number of artificial problems of bounded difficulty designed to test BOA and hBOA on the boundary of their design envelope. The algorithms are also extensively tested on two interesting classes of real-world problems: MAXSAT and Ising spin glasses with periodic boundary conditions in two and three dimensions. Experimental results validate the theoretical model and confirm that BOA and hBOA provide robust and scalable solution for nearly decomposable and hierarchical problems with only little problem-specific information.
Scalable Optimization via Probabilistic Modeling
Title | Scalable Optimization via Probabilistic Modeling PDF eBook |
Author | Martin Pelikan |
Publisher | Springer Science & Business Media |
Pages | 363 |
Release | 2006-09-25 |
Genre | Mathematics |
ISBN | 3540349537 |
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.
Advances in Soft Computing
Title | Advances in Soft Computing PDF eBook |
Author | Rajkumar Roy |
Publisher | Springer Science & Business Media |
Pages | 627 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1447108191 |
Advances in Soft Computing contains the most recent developments in the field of soft computing in engineering design and manufacture. The book comprises a selection of papers that were first presented in June 1998 at the 3rd On-line World Conference on Soft Computing in Engineering Design and Manufacturing. Amongst these are four invited papers by World-renowned researchers in the field. Soft computing is a collection of methodologies which aim to exploit tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low solution cost. The area of applications of soft computing is extensive. Principally the constituents of soft computing are: fuzzy computing, neuro-computing, genetic computing and probabilistic computing. The topics in this book are well focused on engineering design an d manufacturing. This broad collection of 43 research papers, has been arranged into nine parts by the editors. These include: Design Support Systems, Intelligent Control, Data Mining and New Topics in EA basics. The papers on evolutionary design and optimisation are of particular interest. Innovative techniques are explored and the reader is introduced to new, highly advanced research results. The editors present a unique collection of papers that provide a comprehensive overview of current developments in soft computing research around the world.
Genetic and Evolutionary Computation — GECCO 2004
Title | Genetic and Evolutionary Computation — GECCO 2004 PDF eBook |
Author | Kalyanmoy Deb |
Publisher | Springer |
Pages | 1448 |
Release | 2004-10-12 |
Genre | Computers |
ISBN | 9783540223436 |
The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA, USA, in June 2004. The 230 revised full papers and 104 poster papers presented were carefully reviewed and selected from 460 submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; artificial immune systems, biological applications; coevolution; evolutionary robotics; evolution strategies and evolutionary programming; evolvable hardware; genetic algorithms; genetic programming; learning classifier systems; real world applications; and search-based software engineering.
Genetic and Evolutionary Computation--GECCO 2003
Title | Genetic and Evolutionary Computation--GECCO 2003 PDF eBook |
Author | Erick Cantú-Paz |
Publisher | Springer Science & Business Media |
Pages | 1294 |
Release | 2003-07-08 |
Genre | Computers |
ISBN | 3540406026 |
The set LNCS 2723 and LNCS 2724 constitutes the refereed proceedings of the Genetic and Evolutionaty Computation Conference, GECCO 2003, held in Chicago, IL, USA in July 2003. The 193 revised full papers and 93 poster papers presented were carefully reviewed and selected from a total of 417 submissions. The papers are organized in topical sections on a-life adaptive behavior, agents, and ant colony optimization; artificial immune systems; coevolution; DNA, molecular, and quantum computing; evolvable hardware; evolutionary robotics; evolution strategies and evolutionary programming; evolutionary sheduling routing; genetic algorithms; genetic programming; learning classifier systems; real-world applications; and search based softare engineering.
Automated Machine Learning
Title | Automated Machine Learning PDF eBook |
Author | Frank Hutter |
Publisher | Springer |
Pages | 223 |
Release | 2019-05-17 |
Genre | Computers |
ISBN | 3030053180 |
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Probability for Machine Learning
Title | Probability for Machine Learning PDF eBook |
Author | Jason Brownlee |
Publisher | Machine Learning Mastery |
Pages | 319 |
Release | 2019-09-24 |
Genre | Computers |
ISBN |
Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.