Quantum Wells, Wires and Dots

Quantum Wells, Wires and Dots
Title Quantum Wells, Wires and Dots PDF eBook
Author Paul Harrison
Publisher John Wiley & Sons
Pages 511
Release 2005-10-31
Genre Science
ISBN 0470010819

Download Quantum Wells, Wires and Dots Book in PDF, Epub and Kindle

Quantum Wells, Wires and Dots Second Edition: Theoretical andComputational Physics of Semiconductor Nanostructures providesall the essential information, both theoretical and computational,for complete beginners to develop an understanding of how theelectronic, optical and transport properties of quantum wells,wires and dots are calculated. Readers are lead through a series ofsimple theoretical and computational examples giving solidfoundations from which they will gain the confidence to initiatetheoretical investigations or explanations of their own. Emphasis on combining the analysis and interpretation ofexperimental data with the development of theoretical ideas Complementary to the more standard texts Aimed at the physics community at large, rather than just thelow-dimensional semiconductor expert The text present solutions for a large number of realsituations Presented in a lucid style with easy to follow steps related toaccompanying illustrative examples

Nanostructured Films and Coatings

Nanostructured Films and Coatings
Title Nanostructured Films and Coatings PDF eBook
Author Gan-Moog Chow
Publisher Springer Science & Business Media
Pages 379
Release 2012-12-06
Genre Technology & Engineering
ISBN 9401140529

Download Nanostructured Films and Coatings Book in PDF, Epub and Kindle

Nanostructured films and coatings possess unique properties due to both size and interface effects. They find many applications in areas such as electronics, catalysis, protection, data storage, optics and sensors. The focus of the present book is on synthesis and processing; advanced characterization techniques; properties (including mechanical, chemical, electronic, thermal, catalytic, and magnetic); modelling of interlayer and intralayer interfaces; and applications.

Carbon Nanotube Devices

Carbon Nanotube Devices
Title Carbon Nanotube Devices PDF eBook
Author
Publisher John Wiley & Sons
Pages 384
Release 2008-05-05
Genre Technology & Engineering
ISBN 9783527317202

Download Carbon Nanotube Devices Book in PDF, Epub and Kindle

Following on from the first AMN volume, this handy reference and textbook examines the topic of nanosystem design in further detail. It explains the physical and chemical basics behind the design and fabrication of nanodevices, covering all important, recent advances in the field, while introducing nanosystems to less experienced readers. The result is an important source for a fast, accurate overview of the state of the art of nanosystem realization, summarizing further important literature.

Power GaN Devices

Power GaN Devices
Title Power GaN Devices PDF eBook
Author Matteo Meneghini
Publisher Springer
Pages 383
Release 2016-09-08
Genre Technology & Engineering
ISBN 3319431994

Download Power GaN Devices Book in PDF, Epub and Kindle

This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.

Tunneling Field Effect Transistor Technology

Tunneling Field Effect Transistor Technology
Title Tunneling Field Effect Transistor Technology PDF eBook
Author Lining Zhang
Publisher Springer
Pages 217
Release 2016-04-09
Genre Technology & Engineering
ISBN 3319316532

Download Tunneling Field Effect Transistor Technology Book in PDF, Epub and Kindle

This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency.

Silicon Photonics II

Silicon Photonics II
Title Silicon Photonics II PDF eBook
Author David J. Lockwood
Publisher Springer Science & Business Media
Pages 264
Release 2010-10-13
Genre Science
ISBN 3642105068

Download Silicon Photonics II Book in PDF, Epub and Kindle

This book is volume II of a series of books on silicon photonics. It gives a fascinating picture of the state-of-the-art in silicon photonics from a component perspective. It presents a perspective on what can be expected in the near future. It is formed from a selected number of reviews authored by world leaders in the field, and is written from both academic and industrial viewpoints. An in-depth discussion of the route towards fully integrated silicon photonics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of micro- and nanophotonics and optoelectronics.

Physics and Technology of Silicon Carbide Devices

Physics and Technology of Silicon Carbide Devices
Title Physics and Technology of Silicon Carbide Devices PDF eBook
Author George Gibbs
Publisher
Pages 284
Release 2016-10-01
Genre
ISBN 9781681176437

Download Physics and Technology of Silicon Carbide Devices Book in PDF, Epub and Kindle

Silicon (Si) is by far the most widely used semiconductor material for power devices. On the other hand, Si-based power devices are approaching their material limits, which has provoked a lot of efforts to find alternatives to Si-based power devices for better performance. With the rapid innovations and developments in the semiconductor industry, Silicon Carbide (SiC) power devices have progressed from immature prototypes in laboratories to a viable alternative to Si-based power devices in high-efficiency and high-power density applications. SiC devices have numerous persuasive advantages--high-breakdown voltage, high-operating electric field, high-operating temperature, high-switching frequency and low losses. Silicon Carbide (SiC) devices belong to the so-called wide band gap semiconductor group, which offers a number of attractive characteristics for high voltage power semiconductors when compared to commonly used silicon (Si). Recently, some SiC power devices, for example, Schottky-barrier diodes (SBDs), metal-oxide-semiconductor field-effecttransistors (MOSFETs), junction FETs (JFETs), and their integrated modules have come onto the market. Physics and Technology of Silicon Carbide Devices abundantly describes recent technologies on manufacturing, processing, characterization, modeling, etc. for SiC devices.