Heterogeneity and Locality-aware Work Stealing for Large Scale Branch-and-Bound Irregular Algorithms

Heterogeneity and Locality-aware Work Stealing for Large Scale Branch-and-Bound Irregular Algorithms
Title Heterogeneity and Locality-aware Work Stealing for Large Scale Branch-and-Bound Irregular Algorithms PDF eBook
Author Trong-Tuan Vu
Publisher
Pages 0
Release 2014
Genre
ISBN

Download Heterogeneity and Locality-aware Work Stealing for Large Scale Branch-and-Bound Irregular Algorithms Book in PDF, Epub and Kindle

Branch and Bound (B&B) algorithms are exact methods used to solve combinatorial optimization problems (COPs). The computation process of B&B is extremely time-intensive when solving large problem instances since the algorithm must explore a very large space which can be viewed as a highly irregular tree. Consequently, B&B algorithms are usually parallelized on large scale distributed computing environments in order to speedup their execution time. Large scale distributed computing environments, such as Grids and Clouds, can provide a huge amount of computing resources so that very large B&B instances can be tackled. However achieving high performance is very challenging mainly because of (i) the irregular characteristics of B&B workload and (ii) the heterogeneity exposed by large scale computing environments. This thesis addresses and deals with the above issues in order to design high performance parallel B&B on large scale heterogeneous computing environments. We focus on dynamic load balancing techniques which are to guarantee that no computing resources are underloaded or overloaded during execution time. We also show how to tackle the irregularity of B&B while running on different computing environments, and consider to compare our proposed solutions with the state-of-the-art algorithms. In particular, we propose several dynamic load balancing algorithms for homogeneous, node-heterogeneous and link-heterogeneous computing platforms. In each context, our approach is shown to perform much better than the state-of-the-art approaches.

High-Performance Simulation-Based Optimization

High-Performance Simulation-Based Optimization
Title High-Performance Simulation-Based Optimization PDF eBook
Author Thomas Bartz-Beielstein
Publisher Springer
Pages 298
Release 2019-06-01
Genre Technology & Engineering
ISBN 3030187640

Download High-Performance Simulation-Based Optimization Book in PDF, Epub and Kindle

This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That’s where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.

Heterogeneous Computing with OpenCL

Heterogeneous Computing with OpenCL
Title Heterogeneous Computing with OpenCL PDF eBook
Author Benedict Gaster
Publisher Newnes
Pages 309
Release 2012-11-13
Genre Computers
ISBN 0124058949

Download Heterogeneous Computing with OpenCL Book in PDF, Epub and Kindle

Heterogeneous Computing with OpenCL, Second Edition teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs) such as AMD Fusion technology. It is the first textbook that presents OpenCL programming appropriate for the classroom and is intended to support a parallel programming course. Students will come away from this text with hands-on experience and significant knowledge of the syntax and use of OpenCL to address a range of fundamental parallel algorithms. Designed to work on multiple platforms and with wide industry support, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, Heterogeneous Computing with OpenCL explores memory spaces, optimization techniques, graphics interoperability, extensions, and debugging and profiling. It includes detailed examples throughout, plus additional online exercises and other supporting materials that can be downloaded at http://www.heterogeneouscompute.org/?page_id=7 This book will appeal to software engineers, programmers, hardware engineers, and students/advanced students. Explains principles and strategies to learn parallel programming with OpenCL, from understanding the four abstraction models to thoroughly testing and debugging complete applications. Covers image processing, web plugins, particle simulations, video editing, performance optimization, and more. Shows how OpenCL maps to an example target architecture and explains some of the tradeoffs associated with mapping to various architectures Addresses a range of fundamental programming techniques, with multiple examples and case studies that demonstrate OpenCL extensions for a variety of hardware platforms

Heterogeneous Computing with OpenCL 2.0

Heterogeneous Computing with OpenCL 2.0
Title Heterogeneous Computing with OpenCL 2.0 PDF eBook
Author David R. Kaeli
Publisher Morgan Kaufmann
Pages 330
Release 2015-06-18
Genre Computers
ISBN 0128016493

Download Heterogeneous Computing with OpenCL 2.0 Book in PDF, Epub and Kindle

Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: • Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources • Dynamic parallelism which reduces processor load and avoids bottlenecks • Improved imaging support and integration with OpenGL Designed to work on multiple platforms, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book explores memory spaces, optimization techniques, extensions, debugging and profiling. Multiple case studies and examples illustrate high-performance algorithms, distributing work across heterogeneous systems, embedded domain-specific languages, and will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. Updated content to cover the latest developments in OpenCL 2.0, including improvements in memory handling, parallelism, and imaging support Explanations of principles and strategies to learn parallel programming with OpenCL, from understanding the abstraction models to thoroughly testing and debugging complete applications Example code covering image analytics, web plugins, particle simulations, video editing, performance optimization, and more

Using OpenMP

Using OpenMP
Title Using OpenMP PDF eBook
Author Barbara Chapman
Publisher MIT Press
Pages 378
Release 2007-10-12
Genre Computers
ISBN 0262533022

Download Using OpenMP Book in PDF, Epub and Kindle

A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.

Direct Methods for Sparse Linear Systems

Direct Methods for Sparse Linear Systems
Title Direct Methods for Sparse Linear Systems PDF eBook
Author Timothy A. Davis
Publisher SIAM
Pages 228
Release 2006-09-01
Genre Computers
ISBN 0898716136

Download Direct Methods for Sparse Linear Systems Book in PDF, Epub and Kindle

The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.

Advanced Logic Synthesis

Advanced Logic Synthesis
Title Advanced Logic Synthesis PDF eBook
Author André Inácio Reis
Publisher Springer
Pages 236
Release 2017-11-15
Genre Technology & Engineering
ISBN 3319672959

Download Advanced Logic Synthesis Book in PDF, Epub and Kindle

This book provides a single-source reference to the state-of-the-art in logic synthesis. Readers will benefit from the authors’ expert perspectives on new technologies and logic synthesis, new data structures, big data and logic synthesis, and convergent logic synthesis. The authors describe techniques that will enable readers to take advantage of recent advances in big data techniques and frameworks in order to have better logic synthesis algorithms.