Helium Cryogenics
Title | Helium Cryogenics PDF eBook |
Author | Steven W. Van Sciver |
Publisher | Springer Science & Business Media |
Pages | 466 |
Release | 1986-11-30 |
Genre | Science |
ISBN | 9780306423352 |
At least 10 years have elapsed since a comprehensive monograph concer ned with the broad subject of cryogenics has been published. During this time a considerable quantity of research and development has been carried out in the field of cryogenics. Furthermore, there has been a certain degree of redirection of effort within the field, mostly driven by the variety of new applications, ranging from superconductive magnet systems to micro electronics. Greater emphasis is now being placed on low-temperature cryogenics, particularly that of liquid helium. Until now cryogenic books have provided a broad survey of materials and fluid properties over the entire cryogenic regime, T ::5 150 K. This approach does not allow sufficient detail in any particular area to bring the reader to the current level of understanding in the subject. In addition, the behavior of helium has been lumped with that of other cryogenic fluids, although the properties of helium are quite unique. As a result, a clear relationship has not been established between the fundamental understanding of helium fluids and their potential applications. The present book has been written to fill this void. The approach is to survey the field of cryogenics, specifically as it pertains to helium fluids. This approach is more specialized than that contained in previous cryogenics books. Furthermore, the level of treatment is more advanced and a certain knowledge of fundamental engineering and physics principles has been assumed.
Helium Cryogenics
Title | Helium Cryogenics PDF eBook |
Author | Steven W. Van Sciver |
Publisher | Springer Science & Business Media |
Pages | 487 |
Release | 2012-03-14 |
Genre | Science |
ISBN | 1441999795 |
Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspects of helium fluids to provide a source for engineers and scientists to enhance their usefulness in low-temperature systems. Dr. Van Sciver is a Distinguished Research Professor and John H. Gorrie Professor of Mechanical Engineering at Florida State University. He is also a Program Director at the National High Magnetic Field Laboratory (NHMFL). Dr. Van Sciver joined the FAMU-FSU College of Engineering and the NHMFL in 1991, initiating and teaching a graduate program in magnet and materials engineering and in cryogenic thermal sciences and heat transfer. He also led the NHMFL development efforts of the cryogenic systems for the NHMFL Hybrid and 900 MHz NMR superconducting magnets. Between 1997 and 2003, he served as Director of Magnet Science and Technology at the NHMFL. Dr. Van Sciver is a Fellow of the ASME and the Cryogenic Society of America and American Editor for the journal Cryogenics. He is the 2010 recipient of the Kurt Mendelssohn Award. Prior to joining Florida State University, Dr. Van Sciver was Research Scientist and then Professor of Nuclear Engineering, Engineering Physics and Mechanical Engineering at the University of Wisconsin-Madison from 1976 to 1991. During that time he also served as the Associate Director of the Applied Superconductivity Center. Dr. Van Sciver received his PhD in Low Temperature Physics from the University of Washington-Seattle in 1976. He received his BS degree in Engineering Physics from Lehigh University in 1970. Dr. Van Sciver is author of over 200 publications and patents in low temperature physics, liquid helium technology, cryogenic engineering and magnet technology. The first edition of Helium Cryogenics was published by Plenum Press (1986). The present work is an update and expansion of that original project.
Helium Cryogenics
Title | Helium Cryogenics PDF eBook |
Author | Steven W. Van Sciver |
Publisher | Springer Science & Business Media |
Pages | 487 |
Release | 2012-02-10 |
Genre | Science |
ISBN | 1441999787 |
Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspects of helium fluids to provide a source for engineers and scientists to enhance their usefulness in low-temperature systems. Dr. Van Sciver is a Distinguished Research Professor and John H. Gorrie Professor of Mechanical Engineering at Florida State University. He is also a Program Director at the National High Magnetic Field Laboratory (NHMFL). Dr. Van Sciver joined the FAMU-FSU College of Engineering and the NHMFL in 1991, initiating and teaching a graduate program in magnet and materials engineering and in cryogenic thermal sciences and heat transfer. He also led the NHMFL development efforts of the cryogenic systems for the NHMFL Hybrid and 900 MHz NMR superconducting magnets. Between 1997 and 2003, he served as Director of Magnet Science and Technology at the NHMFL. Dr. Van Sciver is a Fellow of the ASME and the Cryogenic Society of America and American Editor for the journal Cryogenics. He is the 2010 recipient of the Kurt Mendelssohn Award. Prior to joining Florida State University, Dr. Van Sciver was Research Scientist and then Professor of Nuclear Engineering, Engineering Physics and Mechanical Engineering at the University of Wisconsin-Madison from 1976 to 1991. During that time he also served as the Associate Director of the Applied Superconductivity Center. Dr. Van Sciver received his PhD in Low Temperature Physics from the University of Washington-Seattle in 1976. He received his BS degree in Engineering Physics from Lehigh University in 1970. Dr. Van Sciver is author of over 200 publications and patents in low temperature physics, liquid helium technology, cryogenic engineering and magnet technology. The first edition of Helium Cryogenics was published by Plenum Press (1986). The present work is an update and expansion of that original project.
Cryogenic Helium Refrigeration for Middle and Large Powers
Title | Cryogenic Helium Refrigeration for Middle and Large Powers PDF eBook |
Author | Guy Gistau Baguer |
Publisher | Springer Nature |
Pages | 725 |
Release | 2020-10-27 |
Genre | Science |
ISBN | 3030516776 |
This book offers a practical introduction to helium refrigeration engineering, taking a logical and structured approach to the design, building, commissioning, operation and maintenance of refrigeration systems. It begins with a short refresher of cryogenic principles, and a review of the theory of heat exchangers, allowing the reader to understand the importance of the heat exchanger role in the various thermodynamic cycle structures. The cycles are considered from the simplest (Joule Thomson) to the most complicated ones for the very large refrigeration plants and, finally, those operating at temperatures lower than 4.5 K. The focus then turns to the operation, ability and limitations of the main components, including room temperature cycle screw compressors, heat exchangers, cryogenic expansion turbines, cryogenic centrifugal compressors and circulators. The book also describes the basic principles of process control and studies the operating situations of helium plants, with emphasis on high level efficiency. A major issue is helium purity, and the book explains why helium is polluted, how to purify it and then how to check its purity, to ensure that all components are filled with pure helium prior to starting. Although the intention of the book is not to design thermodynamic cycles, it is of interest to a designer or operator of a cryogenic system to perform some simplified calculations to get an idea of how components or systems are behaving. Throughout the book, such calculations are generally performed using Microsoft® Excel and the Gaspak® or Hepak® software.
Cryogenic Engineering
Title | Cryogenic Engineering PDF eBook |
Author | Klaus D. Timmerhaus |
Publisher | Springer Science & Business Media |
Pages | 379 |
Release | 2007-11-12 |
Genre | Science |
ISBN | 038746896X |
This is a benchmark reference work on Cryogenic Engineering which chronicles the major developments in the field. Starting with an historical background, this book reviews the development of data resources now available for cryogenic fields and properties of materials. It presents the latest changes in cryopreservation and the advances over the past 50 years. The book also highlights an exceptional reference listing to provide referral to more details.
Process Design for Cryogenics
Title | Process Design for Cryogenics PDF eBook |
Author | Alexander Alekseev |
Publisher | John Wiley & Sons |
Pages | 530 |
Release | 2024-08-28 |
Genre | Technology & Engineering |
ISBN | 3527815627 |
Up-to-date overview of the method for producing the main industrial gases This book covers process design for cryogenic processes like air separation, natural gas liquefaction, and hydrogen and helium liquefaction. It offers an overview of the basics of cryogenics and information on process design for modern industrial plants. Throughout, the book helps readers visualize the theories of thermodynamics related to cryogenics in practice. A central concept in the book is the connection between the theoretical world of process design and the real limitations given by available hardware components and systems. Sample topics covered in Process Design for Cryogenics include: Cryogenic gases like nitrogen, oxygen, argon, neon, hydrogen, helium, and methane Thermodynamics Typical cryogenic refrigeration processes, including the classic Joule Thomson process, the contemporary mixed-gas Joule Thomson process, and expander-based processes like Brayton and Claude cycles Helium and hydrogen liquefaction and air separation Process Design for Cryogenics is a comprehensive must-have resource for engineers and scientists working in academia and industry on cryogenic processes.
Cryogenic Heat Transfer
Title | Cryogenic Heat Transfer PDF eBook |
Author | Randall F. Barron |
Publisher | CRC Press |
Pages | 398 |
Release | 1999-05-01 |
Genre | Science |
ISBN | 9781560325512 |
Presents applied heat transfer principles in the range of extremely low temperatures. The specific features of heat transfer at cryogenic temperatures, such as variable properties, near critical convection, and Kapitza resistance, are described. This book includes many example problems, in each section, that help to illustrate the applications of the principles presented.