Hecke Algebras with Unequal Parameters

Hecke Algebras with Unequal Parameters
Title Hecke Algebras with Unequal Parameters PDF eBook
Author George Lusztig
Publisher American Mathematical Soc.
Pages 145
Release 2003
Genre Mathematics
ISBN 0821833561

Download Hecke Algebras with Unequal Parameters Book in PDF, Epub and Kindle

Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over $p$-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives researchers and graduate students working in the theory of algebraic groups and their representations an invaluable insight and a wealth of new and useful information.

Kazhdan-Lusztig Cells with Unequal Parameters

Kazhdan-Lusztig Cells with Unequal Parameters
Title Kazhdan-Lusztig Cells with Unequal Parameters PDF eBook
Author Cédric Bonnafé
Publisher Springer
Pages 350
Release 2018-05-07
Genre Mathematics
ISBN 3319707361

Download Kazhdan-Lusztig Cells with Unequal Parameters Book in PDF, Epub and Kindle

This monograph provides a comprehensive introduction to the Kazhdan-Lusztig theory of cells in the broader context of the unequal parameter case. Serving as a useful reference, the present volume offers a synthesis of significant advances made since Lusztig’s seminal work on the subject was published in 2002. The focus lies on the combinatorics of the partition into cells for general Coxeter groups, with special attention given to induction methods, cellular maps and the role of Lusztig's conjectures. Using only algebraic and combinatorial methods, the author carefully develops proofs, discusses open conjectures, and presents recent research, including a chapter on the action of the cactus group. Kazhdan-Lusztig Cells with Unequal Parameters will appeal to graduate students and researchers interested in related subject areas, such as Lie theory, representation theory, and combinatorics of Coxeter groups. Useful examples and various exercises make this book suitable for self-study and use alongside lecture courses. Information for readers: The character {\mathbb{Z}} has been corrupted in the print edition of this book and appears incorrectly with a diagonal line running through the symbol.

Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory

Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory
Title Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory PDF eBook
Author Gebhard Böckle
Publisher Springer
Pages 753
Release 2018-03-22
Genre Mathematics
ISBN 3319705660

Download Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory Book in PDF, Epub and Kindle

This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It offers a valuable resource for all researchers, from graduate students through established experts, who are interested in the computational aspects of algebra, geometry, and/or number theory.

Noncommutative Geometry and Number Theory

Noncommutative Geometry and Number Theory
Title Noncommutative Geometry and Number Theory PDF eBook
Author Caterina Consani
Publisher Springer Science & Business Media
Pages 374
Release 2007-12-18
Genre Mathematics
ISBN 3834803529

Download Noncommutative Geometry and Number Theory Book in PDF, Epub and Kindle

In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.

Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras

Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras
Title Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras PDF eBook
Author Meinolf Geck
Publisher Oxford University Press
Pages 478
Release 2000
Genre Mathematics
ISBN 9780198502500

Download Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras Book in PDF, Epub and Kindle

Finite Coxeter groups and related structures arise naturally in several branches of mathematics such as the theory of Lie algebras and algebraic groups. The corresponding Iwahori-Hecke algebras are then obtained by a certain deformation process which have applications in the representation theory of groups of Lie type and the theory of knots and links. This book develops the theory of conjugacy classes and irreducible character, both for finite Coxeter groups and the associated Iwahori-Hecke algebras. Topics covered range from classical results to more recent developments and are clear and concise. This is the first book to develop these subjects both from a theoretical and an algorithmic point of view in a systematic way, covering all types of finite Coxeter groups.

Commutative Algebra and Noncommutative Algebraic Geometry

Commutative Algebra and Noncommutative Algebraic Geometry
Title Commutative Algebra and Noncommutative Algebraic Geometry PDF eBook
Author David Eisenbud
Publisher Cambridge University Press
Pages 463
Release 2015-11-19
Genre Mathematics
ISBN 1107065623

Download Commutative Algebra and Noncommutative Algebraic Geometry Book in PDF, Epub and Kindle

This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 1 contains expository papers ideal for those entering the field.

Trends in Representation Theory of Algebras and Related Topics

Trends in Representation Theory of Algebras and Related Topics
Title Trends in Representation Theory of Algebras and Related Topics PDF eBook
Author Andrzej Skowroński
Publisher European Mathematical Society
Pages 732
Release 2008
Genre Representations of algebras
ISBN 9783037190623

Download Trends in Representation Theory of Algebras and Related Topics Book in PDF, Epub and Kindle

This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development. The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen-Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander-Reiten theory, Calabi-Yau triangulated categories, Poincare duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory. This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.