Hands-On Programming with R
Title | Hands-On Programming with R PDF eBook |
Author | Garrett Grolemund |
Publisher | "O'Reilly Media, Inc." |
Pages | 408 |
Release | 2014-06-13 |
Genre | Computers |
ISBN | 1449359108 |
Learn how to program by diving into the R language, and then use your newfound skills to solve practical data science problems. With this book, you’ll learn how to load data, assemble and disassemble data objects, navigate R’s environment system, write your own functions, and use all of R’s programming tools. RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You’ll gain valuable programming skills and support your work as a data scientist at the same time. Work hands-on with three practical data analysis projects based on casino games Store, retrieve, and change data values in your computer’s memory Write programs and simulations that outperform those written by typical R users Use R programming tools such as if else statements, for loops, and S3 classes Learn how to write lightning-fast vectorized R code Take advantage of R’s package system and debugging tools Practice and apply R programming concepts as you learn them
Hands-On Programming with R
Title | Hands-On Programming with R PDF eBook |
Author | Garrett Grolemund |
Publisher | "O'Reilly Media, Inc." |
Pages | 249 |
Release | 2014-06-13 |
Genre | Computers |
ISBN | 1449359116 |
Learn how to program by diving into the R language, and then use your newfound skills to solve practical data science problems. With this book, you’ll learn how to load data, assemble and disassemble data objects, navigate R’s environment system, write your own functions, and use all of R’s programming tools. RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You’ll gain valuable programming skills and support your work as a data scientist at the same time. Work hands-on with three practical data analysis projects based on casino games Store, retrieve, and change data values in your computer’s memory Write programs and simulations that outperform those written by typical R users Use R programming tools such as if else statements, for loops, and S3 classes Learn how to write lightning-fast vectorized R code Take advantage of R’s package system and debugging tools Practice and apply R programming concepts as you learn them
Scientific Data Analysis with R
Title | Scientific Data Analysis with R PDF eBook |
Author | Azizur Rahman |
Publisher | CRC Press |
Pages | 419 |
Release | 2024-11-28 |
Genre | Mathematics |
ISBN | 104014697X |
In an era marked by exponential growth in data generation and an unprecedented convergence of technology and healthcare, the intersection of biostatistics and data science has become a pivotal domain. This book is the ideal companion in navigating the convergence of statistical methodologies and data science techniques with diverse applications implemented in the open-source environment of R. It is designed to be a comprehensive guide, marrying the principles of biostatistics with the practical implementation of statistics and data science in R, thereby empowering learners, researchers, and practitioners with the tools necessary to extract meaningful knowledge from biological, health, and medical datasets. This book is intended for students, researchers, and professionals eager to harness the combined power of biostatistics, data science, and the R programming language while gathering vital statistical knowledge needed for cutting-edge scientists in all fields. It is useful for those seeking to understand the basics of data science and statistical analysis, or looking to enhance their skills in handling any simple or complex data including biological, health, medical, and industry data. Key Features: Presents contemporary concepts of data science and biostatistics with real-life data analysis examples Promotes the evolution of fundamental and advanced methods applying to real-life problem-solving cases Explores computational statistical data science techniques from initial conception to recent developments of biostatistics Provides all R codes and real-world datasets to practice and competently apply into reader’s own domains Written in an exclusive state-of-the-art deductive approach without any theoretical hitches to support all contemporary readers
Introduction to NFL Analytics with R
Title | Introduction to NFL Analytics with R PDF eBook |
Author | Bradley J. Congelio |
Publisher | CRC Press |
Pages | 383 |
Release | 2023-12-19 |
Genre | Sports & Recreation |
ISBN | 1003813267 |
It has become difficult to ignore the analytics movement within the NFL. An increasing number of coaches openly integrate advanced numbers into their game plans, and commentators, throughout broadcasts, regularly use terms such as air yards, CPOE, and EPA on a casual basis. This rapid growth, combined with an increasing accessibility to NFL data, has helped create a burgeoning amateur analytics movement, highlighted by the NFL’s annual Big Data Bowl. Because learning a coding language can be a difficult enough endeavor, Introduction to NFL Analytics with R is purposefully written in a more informal format than readers of similar books may be accustomed to, opting to provide step-by-step instructions in a structured, jargon-free manner. Key Coverage: Installing R, RStudio, and necessary packages Working and becoming fluent in the tidyverse Finding meaning in NFL data with examples from all the functions in the nflverse family of packages Using NFL data to create eye-catching data visualizations Building statistical models starting with simple regressions and progressing to advanced machine learning models using tidymodels and eXtreme Gradient Boosting The book is written for novices of R programming all the way to more experienced coders, as well as audiences with differing expected outcomes. Professors can use Introduction to NFL Analytics with R to provide data science lessons through the lens of the NFL, while students can use it as an educational tool to create robust visualizations and machine learning models for assignments. Journalists, bloggers, and arm-chair quarterbacks alike will find the book helpful to underpin their arguments by providing hard data and visualizations to back up their claims.
Data Science, Analytics and Machine Learning with R
Title | Data Science, Analytics and Machine Learning with R PDF eBook |
Author | Luiz Paulo Favero |
Publisher | Academic Press |
Pages | 662 |
Release | 2023-01-23 |
Genre | Computers |
ISBN | 0323859232 |
Data Science, Analytics and Machine Learning with R explains the principles of data mining and machine learning techniques and accentuates the importance of applied and multivariate modeling. The book emphasizes the fundamentals of each technique, with step-by-step codes and real-world examples with data from areas such as medicine and health, biology, engineering, technology and related sciences. Examples use the most recent R language syntax, with recognized robust, widespread and current packages. Code scripts are exhaustively commented, making it clear to readers what happens in each command. For data collection, readers are instructed how to build their own robots from the very beginning. In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear. - Presents a comprehensive and practical overview of machine learning, data mining and AI techniques for a broad multidisciplinary audience - Serves readers who are interested in statistics, analytics and modeling, and those who wish to deepen their knowledge in programming through the use of R - Teaches readers how to apply machine learning techniques to a wide range of data and subject areas - Presents data in a graphically appealing way, promoting greater information transparency and interactive learning
R for Data Science
Title | R for Data Science PDF eBook |
Author | Hadley Wickham |
Publisher | "O'Reilly Media, Inc." |
Pages | 579 |
Release | 2023-06-08 |
Genre | Computers |
ISBN | 1492097373 |
Use R to turn data into insight, knowledge, and understanding. With this practical book, aspiring data scientists will learn how to do data science with R and RStudio, along with the tidyverse—a collection of R packages designed to work together to make data science fast, fluent, and fun. Even if you have no programming experience, this updated edition will have you doing data science quickly. You'll learn how to import, transform, and visualize your data and communicate the results. And you'll get a complete, big-picture understanding of the data science cycle and the basic tools you need to manage the details. Updated for the latest tidyverse features and best practices, new chapters show you how to get data from spreadsheets, databases, and websites. Exercises help you practice what you've learned along the way. You'll understand how to: Visualize: Create plots for data exploration and communication of results Transform: Discover variable types and the tools to work with them Import: Get data into R and in a form convenient for analysis Program: Learn R tools for solving data problems with greater clarity and ease Communicate: Integrate prose, code, and results with Quarto
Understanding R:BASE
Title | Understanding R:BASE PDF eBook |
Author | Alan Simpson |
Publisher | Sybex |
Pages | 642 |
Release | 1988 |
Genre | Computers |
ISBN | 9780895885036 |