Hands-On Machine Learning with Azure
Title | Hands-On Machine Learning with Azure PDF eBook |
Author | Thomas K Abraham |
Publisher | Packt Publishing Ltd |
Pages | 331 |
Release | 2018-10-31 |
Genre | Computers |
ISBN | 1789130271 |
Implement machine learning, cognitive services, and artificial intelligence solutions by leveraging Azure cloud technologies Key FeaturesLearn advanced concepts in Azure ML and the Cortana Intelligence Suite architectureExplore ML Server using SQL Server and HDInsight capabilitiesImplement various tools in Azure to build and deploy machine learning modelsBook Description Implementing Machine learning (ML) and Artificial Intelligence (AI) in the cloud had not been possible earlier due to the lack of processing power and storage. However, Azure has created ML and AI services that are easy to implement in the cloud. Hands-On Machine Learning with Azure teaches you how to perform advanced ML projects in the cloud in a cost-effective way. The book begins by covering the benefits of ML and AI in the cloud. You will then explore Microsoft’s Team Data Science Process to establish a repeatable process for successful AI development and implementation. You will also gain an understanding of AI technologies available in Azure and the Cognitive Services APIs to integrate them into bot applications. This book lets you explore prebuilt templates with Azure Machine Learning Studio and build a model using canned algorithms that can be deployed as web services. The book then takes you through a preconfigured series of virtual machines in Azure targeted at AI development scenarios. You will get to grips with the ML Server and its capabilities in SQL and HDInsight. In the concluding chapters, you’ll integrate patterns with other non-AI services in Azure. By the end of this book, you will be fully equipped to implement smart cognitive actions in your models. What you will learnDiscover the benefits of leveraging the cloud for ML and AIUse Cognitive Services APIs to build intelligent botsBuild a model using canned algorithms from Microsoft and deploy it as a web serviceDeploy virtual machines in AI development scenariosApply R, Python, SQL Server, and Spark in AzureBuild and deploy deep learning solutions with CNTK, MMLSpark, and TensorFlowImplement model retraining in IoT, Streaming, and Blockchain solutionsExplore best practices for integrating ML and AI functions with ADLA and logic appsWho this book is for If you are a data scientist or developer familiar with Azure ML and cognitive services and want to create smart models and make sense of data in the cloud, this book is for you. You’ll also find this book useful if you want to bring powerful machine learning services into your cloud applications. Some experience with data manipulation and processing, using languages like SQL, Python, and R, will aid in understanding the concepts covered in this book
Hands-On Machine Learning with Azure
Title | Hands-On Machine Learning with Azure PDF eBook |
Author | Thomas K. Abraham |
Publisher | |
Pages | 340 |
Release | 2018-10-31 |
Genre | Computers |
ISBN | 9781789131956 |
Implement machine learning, cognitive services, and artificial intelligence solutions by leveraging Azure cloud technologies Key Features Learn advanced concepts in Azure ML and the Cortana Intelligence Suite architecture Explore ML Server using SQL Server and HDInsight capabilities Implement various tools in Azure to build and deploy machine learning models Book Description Implementing Machine learning (ML) and Artificial Intelligence (AI) in the cloud had not been possible earlier due to the lack of processing power and storage. However, Azure has created ML and AI services that are easy to implement in the cloud. Hands-On Machine Learning with Azure teaches you how to perform advanced ML projects in the cloud in a cost-effective way. The book begins by covering the benefits of ML and AI in the cloud. You will then explore Microsoft's Team Data Science Process to establish a repeatable process for successful AI development and implementation. You will also gain an understanding of AI technologies available in Azure and the Cognitive Services APIs to integrate them into bot applications. This book lets you explore prebuilt templates with Azure Machine Learning Studio and build a model using canned algorithms that can be deployed as web services. The book then takes you through a preconfigured series of virtual machines in Azure targeted at AI development scenarios. You will get to grips with the ML Server and its capabilities in SQL and HDInsight. In the concluding chapters, you'll integrate patterns with other non-AI services in Azure. By the end of this book, you will be fully equipped to implement smart cognitive actions in your models. What you will learn Discover the benefits of leveraging the cloud for ML and AI Use Cognitive Services APIs to build intelligent bots Build a model using canned algorithms from Microsoft and deploy it as a web service Deploy virtual machines in AI development scenarios Apply R, Python, SQL Server, and Spark in Azure Build and deploy deep learning solutions with CNTK, MMLSpark, and TensorFlow Implement model retraining in IoT, Streaming, and Blockchain solutions Explore best practices for integrating ML and AI functions with ADLA and logic apps Who this book is for If you are a data scientist or developer familiar with Azure ML and cognitive services and want to create smart models and make sense of data in the cloud, this book is for you. You'll also find this book useful if you want to bring powerful machine learning services into your cloud applications. Some experience with data manipulation and processing, using languages like SQL, Python, and R, will aid in understanding the concepts covered in this book
Practical Automated Machine Learning on Azure
Title | Practical Automated Machine Learning on Azure PDF eBook |
Author | Deepak Mukunthu |
Publisher | "O'Reilly Media, Inc." |
Pages | 190 |
Release | 2019-09-23 |
Genre | Computers |
ISBN | 1492055549 |
Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you’ll learn how to apply automated machine learning (AutoML), a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology. Building machine-learning models is an iterative and time-consuming process. Even those who know how to create ML models may be limited in how much they can explore. Once you complete this book, you’ll understand how to apply AutoML to your data right away. Learn how companies in different industries are benefiting from AutoML Get started with AutoML using Azure Explore aspects such as algorithm selection, auto featurization, and hyperparameter tuning Understand how data analysts, BI professions, developers can use AutoML in their familiar tools and experiences Learn how to get started using AutoML for use cases including classification, regression, and forecasting.
Microsoft Azure Essentials Azure Machine Learning
Title | Microsoft Azure Essentials Azure Machine Learning PDF eBook |
Author | Jeff Barnes |
Publisher | Microsoft Press |
Pages | 393 |
Release | 2015-04-25 |
Genre | Computers |
ISBN | 073569818X |
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.
Azure Data Scientist Associate Certification Guide
Title | Azure Data Scientist Associate Certification Guide PDF eBook |
Author | Andreas Botsikas |
Publisher | Packt Publishing Ltd |
Pages | 448 |
Release | 2021-12-03 |
Genre | Computers |
ISBN | 1800561261 |
Develop the skills you need to run machine learning workloads in Azure and pass the DP-100 exam with ease Key FeaturesCreate end-to-end machine learning training pipelines, with or without codeTrack experiment progress using the cloud-based MLflow-compatible process of Azure ML servicesOperationalize your machine learning models by creating batch and real-time endpointsBook Description The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam. What you will learnCreate a working environment for data science workloads on AzureRun data experiments using Azure Machine Learning servicesCreate training and inference pipelines using the designer or codeDiscover the best model for your dataset using Automated MLUse hyperparameter tuning to optimize trained modelsDeploy, use, and monitor models in productionInterpret the predictions of a trained modelWho this book is for This book is for developers who want to infuse their applications with AI capabilities and data scientists looking to scale their machine learning experiments in the Azure cloud. Basic knowledge of Python is needed to follow the code samples used in the book. Some experience in training machine learning models in Python using common frameworks like scikit-learn will help you understand the content more easily.
Hands-On Machine Learning with Microsoft Excel 2019
Title | Hands-On Machine Learning with Microsoft Excel 2019 PDF eBook |
Author | Julio Cesar Rodriguez Martino |
Publisher | Packt Publishing Ltd |
Pages | 243 |
Release | 2019-04-30 |
Genre | Computers |
ISBN | 178934512X |
A practical guide to getting the most out of Excel, using it for data preparation, applying machine learning models (including cloud services) and understanding the outcome of the data analysis. Key FeaturesUse Microsoft's product Excel to build advanced forecasting models using varied examples Cover range of machine learning tasks such as data mining, data analytics, smart visualization, and more Derive data-driven techniques using Excel plugins and APIs without much code required Book Description We have made huge progress in teaching computers to perform difficult tasks, especially those that are repetitive and time-consuming for humans. Excel users, of all levels, can feel left behind by this innovation wave. The truth is that a large amount of the work needed to develop and use a machine learning model can be done in Excel. The book starts by giving a general introduction to machine learning, making every concept clear and understandable. Then, it shows every step of a machine learning project, from data collection, reading from different data sources, developing models, and visualizing the results using Excel features and offerings. In every chapter, there are several examples and hands-on exercises that will show the reader how to combine Excel functions, add-ins, and connections to databases and to cloud services to reach the desired goal: building a full data analysis flow. Different machine learning models are shown, tailored to the type of data to be analyzed. At the end of the book, the reader is presented with some advanced use cases using Automated Machine Learning, and artificial neural network, which simplifies the analysis task and represents the future of machine learning. What you will learnUse Excel to preview and cleanse datasetsUnderstand correlations between variables and optimize the input to machine learning modelsUse and evaluate different machine learning models from ExcelUnderstand the use of different visualizationsLearn the basic concepts and calculations to understand how artificial neural networks workLearn how to connect Excel to the Microsoft Azure cloudGet beyond proof of concepts and build fully functional data analysis flowsWho this book is for This book is for data analysis, machine learning enthusiasts, project managers, and someone who doesn't want to code much for performing core tasks of machine learning. Each example will help you perform end-to-end smart analytics. Working knowledge of Excel is required.
Mastering Azure Machine Learning
Title | Mastering Azure Machine Learning PDF eBook |
Author | Kaijisse Waaijer |
Publisher | |
Pages | 394 |
Release | 2020-04-30 |
Genre | Computers |
ISBN | 9781789807554 |
This book will help you learn how to build a scalable end-to-end machine learning pipeline in Azure from experimentation and training to optimization and deployment. By the end of this book, you will learn to build complex distributed systems and scalable cloud infrastructure using powerful machine learning algorithms to compute insights.