Hands-On Data Science with SQL Server 2017

Hands-On Data Science with SQL Server 2017
Title Hands-On Data Science with SQL Server 2017 PDF eBook
Author Marek Chmel
Publisher Packt Publishing Ltd
Pages 494
Release 2018-11-29
Genre Computers
ISBN 1788996437

Download Hands-On Data Science with SQL Server 2017 Book in PDF, Epub and Kindle

Find, explore, and extract big data to transform into actionable insights Key FeaturesPerform end-to-end data analysis—from exploration to visualizationReal-world examples, tasks, and interview queries to be a proficient data scientistUnderstand how SQL is used for big data processing using HiveQL and SparkSQLBook Description SQL Server is a relational database management system that enables you to cover end-to-end data science processes using various inbuilt services and features. Hands-On Data Science with SQL Server 2017 starts with an overview of data science with SQL to understand the core tasks in data science. You will learn intermediate-to-advanced level concepts to perform analytical tasks on data using SQL Server. The book has a unique approach, covering best practices, tasks, and challenges to test your abilities at the end of each chapter. You will explore the ins and outs of performing various key tasks such as data collection, cleaning, manipulation, aggregations, and filtering techniques. As you make your way through the chapters, you will turn raw data into actionable insights by wrangling and extracting data from databases using T-SQL. You will get to grips with preparing and presenting data in a meaningful way, using Power BI to reveal hidden patterns. In the concluding chapters, you will work with SQL Server integration services to transform data into a useful format and delve into advanced examples covering machine learning concepts such as predictive analytics using real-world examples. By the end of this book, you will be in a position to handle the growing amounts of data and perform everyday activities that a data science professional performs. What you will learnUnderstand what data science is and how SQL Server is used for big data processingAnalyze incoming data with SQL queries and visualizationsCreate, train, and evaluate predictive modelsMake predictions using trained models and establish regular retraining coursesIncorporate data source querying into SQL ServerEnhance built-in T-SQL capabilities using SQLCLRVisualize data with Reporting Services, Power View, and Power BITransform data with R, Python, and AzureWho this book is for Hands-On Data Science with SQL Server 2017 is intended for data scientists, data analysts, and big data professionals who want to master their skills learning SQL and its applications. This book will be helpful even for beginners who want to build their career as data science professionals using the power of SQL Server 2017. Basic familiarity with SQL language will aid with understanding the concepts covered in this book.

SQL Server 2017 Machine Learning Services with R

SQL Server 2017 Machine Learning Services with R
Title SQL Server 2017 Machine Learning Services with R PDF eBook
Author Tomaz Kastrun
Publisher Packt Publishing Ltd
Pages 331
Release 2018-02-27
Genre Computers
ISBN 1787280926

Download SQL Server 2017 Machine Learning Services with R Book in PDF, Epub and Kindle

Develop and run efficient R scripts and predictive models for SQL Server 2017 Key Features Learn how you can combine the power of R and SQL Server 2017 to build efficient, cost-effective data science solutions Leverage the capabilities of R Services to perform advanced analytics—from data exploration to predictive modeling A quick primer with practical examples to help you get up- and- running with SQL Server 2017 Machine Learning Services with R, as part of database solutions with continuous integration / continuous delivery. Book Description R Services was one of the most anticipated features in SQL Server 2016, improved significantly and rebranded as SQL Server 2017 Machine Learning Services. Prior to SQL Server 2016, many developers and data scientists were already using R to connect to SQL Server in siloed environments that left a lot to be desired, in order to do additional data analysis, superseding SSAS Data Mining or additional CLR programming functions. With R integrated within SQL Server 2017, these developers and data scientists can now benefit from its integrated, effective, efficient, and more streamlined analytics environment. This book gives you foundational knowledge and insights to help you understand SQL Server 2017 Machine Learning Services with R. First and foremost, the book provides practical examples on how to implement, use, and understand SQL Server and R integration in corporate environments, and also provides explanations and underlying motivations. It covers installing Machine Learning Services;maintaining, deploying, and managing code;and monitoring your services. Delving more deeply into predictive modeling and the RevoScaleR package, this book also provides insights into operationalizing code and exploring and visualizing data. To complete the journey, this book covers the new features in SQL Server 2017 and how they are compatible with R, amplifying their combined power. What you will learn Get an overview of SQL Server 2017 Machine Learning Services with R Manage SQL Server Machine Learning Services from installation to configuration and maintenance Handle and operationalize R code Explore RevoScaleR R algorithms and create predictive models Deploy, manage, and monitor database solutions with R Extend R with SQL Server 2017 features Explore the power of R for database administrators Who this book is for This book is for data analysts, data scientists, and database administrators with some or no experience in R but who are eager to easily deliver practical data science solutions in their day-to-day work (or future projects) using SQL Server.

Hands-On Data Science with SQL Server 2017

Hands-On Data Science with SQL Server 2017
Title Hands-On Data Science with SQL Server 2017 PDF eBook
Author Marek Chmel
Publisher
Pages 506
Release 2018-11-29
Genre Computers
ISBN 9781788996341

Download Hands-On Data Science with SQL Server 2017 Book in PDF, Epub and Kindle

Find, explore, and extract big data to transform into actionable insights Key Features Perform end-to-end data analysis--from exploration to visualization Real-world examples, tasks, and interview queries to be a proficient data scientist Understand how SQL is used for big data processing using HiveQL and SparkSQL Book Description SQL Server is a relational database management system that enables you to cover end-to-end data science processes using various inbuilt services and features. Hands-On Data Science with SQL Server 2017 starts with an overview of data science with SQL to understand the core tasks in data science. You will learn intermediate-to-advanced level concepts to perform analytical tasks on data using SQL Server. The book has a unique approach, covering best practices, tasks, and challenges to test your abilities at the end of each chapter. You will explore the ins and outs of performing various key tasks such as data collection, cleaning, manipulation, aggregations, and filtering techniques. As you make your way through the chapters, you will turn raw data into actionable insights by wrangling and extracting data from databases using T-SQL. You will get to grips with preparing and presenting data in a meaningful way, using Power BI to reveal hidden patterns. In the concluding chapters, you will work with SQL Server integration services to transform data into a useful format and delve into advanced examples covering machine learning concepts such as predictive analytics using real-world examples. By the end of this book, you will be in a position to handle the growing amounts of data and perform everyday activities that a data science professional performs. What you will learn Understand what data science is and how SQL Server is used for big data processing Analyze incoming data with SQL queries and visualizations Create, train, and evaluate predictive models Make predictions using trained models and establish regular retraining courses Incorporate data source querying into SQL Server Enhance built-in T-SQL capabilities using SQLCLR Visualize data with Reporting Services, Power View, and Power BI Transform data with R, Python, and Azure Who this book is for Hands-On Data Science with SQL Server 2017 is intended for data scientists, data analysts, and big data professionals who want to master their skills learning SQL and its applications. This book will be helpful even for beginners who want to build their career as data science professionals using the power of SQL Server 2017. Basic familiarity with SQL language will aid with understanding the concepts covered in this book.

Learn T-SQL Querying

Learn T-SQL Querying
Title Learn T-SQL Querying PDF eBook
Author Pedro Lopes
Publisher Packt Publishing Ltd
Pages 474
Release 2019-05-03
Genre Computers
ISBN 178934297X

Download Learn T-SQL Querying Book in PDF, Epub and Kindle

Troubleshoot query performance issues, identify anti-patterns in code, and write efficient T-SQL queries Key Features Discover T-SQL functionalities and services that help you interact with relational databases Understand the roles, tasks, and responsibilities of a T-SQL developer Explore solutions for carrying out database querying tasks, database administration, and troubleshooting Book DescriptionTransact-SQL (T-SQL) is Microsoft's proprietary extension to the SQL language used with Microsoft SQL Server and Azure SQL Database. This book will be a usefu to learning the art of writing efficient T-SQL code in modern SQL Server versions as well as the Azure SQL Database. The book will get you started with query processing fundamentals to help you write powerful, performant T-SQL queries. You will then focus on query execution plans and leverage them for troubleshooting. In later chapters, you will explain how to identify various T-SQL patterns and anti-patterns. This will help you analyze execution plans to gain insights into current performance, and determine whether or not a query is scalable. You will also build diagnostic queries using dynamic management views (DMVs) and dynamic management functions (DMFs) to address various challenges in T-SQL execution. Next, you will work with the built-in tools of SQL Server to shorten the time taken to address query performance and scalability issues. In the concluding chapters, this will guide you through implementing various features, such as Extended Events, Query Store, and Query Tuning Assistant, using hands-on examples. By the end of the book, you will have developed the skills to determine query performance bottlenecks, avoid pitfalls, and discover the anti-patterns in use.What you will learn Use Query Store to understand and easily change query performance Recognize and eliminate bottlenecks that lead to slow performance Deploy quick fixes and long-term solutions to improve query performance Implement best practices to minimize performance risk using T-SQL Achieve optimal performance by ensuring careful query and index design Use the latest performance optimization features in SQL Server 2017 and SQL Server 2019 Protect query performance during upgrades to newer versions of SQL Server Who this book is for This book is for database administrators, database developers, data analysts, data scientists, and T-SQL practitioners who want to get started with writing T-SQL code and troubleshooting query performance issues with the help of practical examples. Previous knowledge of T-SQL querying is not required to get started with this book.

Automated Machine Learning with Microsoft Azure

Automated Machine Learning with Microsoft Azure
Title Automated Machine Learning with Microsoft Azure PDF eBook
Author Dennis Michael Sawyers
Publisher Packt Publishing Ltd
Pages 340
Release 2021-04-23
Genre Computers
ISBN 1800561970

Download Automated Machine Learning with Microsoft Azure Book in PDF, Epub and Kindle

A practical, step-by-step guide to using Microsoft's AutoML technology on the Azure Machine Learning service for developers and data scientists working with the Python programming language Key FeaturesCreate, deploy, productionalize, and scale automated machine learning solutions on Microsoft AzureImprove the accuracy of your ML models through automatic data featurization and model trainingIncrease productivity in your organization by using artificial intelligence to solve common problemsBook Description Automated Machine Learning with Microsoft Azure will teach you how to build high-performing, accurate machine learning models in record time. It will equip you with the knowledge and skills to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. Guided user interfaces (GUIs) enable both novices and seasoned data scientists to easily train and deploy machine learning solutions to production. Using a careful, step-by-step approach, this book will teach you how to use Azure AutoML with a GUI as well as the AzureML Python software development kit (SDK). First, you'll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You'll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems. By the end of this Azure book, you'll be able to show your business partners exactly how your ML models are making predictions through automatically generated charts and graphs, earning their trust and respect. What you will learnUnderstand how to train classification, regression, and forecasting ML algorithms with Azure AutoMLPrepare data for Azure AutoML to ensure smooth model training and deploymentAdjust AutoML configuration settings to make your models as accurate as possibleDetermine when to use a batch-scoring solution versus a real-time scoring solutionProductionalize your AutoML and discover how to quickly deliver valueCreate real-time scoring solutions with AutoML and Azure Kubernetes ServiceTrain a large number of AutoML models at once using the AzureML Python SDKWho this book is for Data scientists, aspiring data scientists, machine learning engineers, or anyone interested in applying artificial intelligence or machine learning in their business will find this machine learning book useful. You need to have beginner-level knowledge of artificial intelligence and a technical background in computer science, statistics, or information technology before getting started. Familiarity with Python will help you implement the more advanced features found in the chapters, but even data analysts and SQL experts will be able to train ML models after finishing this book.

SQL Server 2017 Integration Services Cookbook

SQL Server 2017 Integration Services Cookbook
Title SQL Server 2017 Integration Services Cookbook PDF eBook
Author Christian Cote
Publisher Packt Publishing Ltd
Pages 551
Release 2017-06-30
Genre Computers
ISBN 1786460874

Download SQL Server 2017 Integration Services Cookbook Book in PDF, Epub and Kindle

Harness the power of SQL Server 2017 Integration Services to build your data integration solutions with ease About This Book Acquaint yourself with all the newly introduced features in SQL Server 2017 Integration Services Program and extend your packages to enhance their functionality This detailed, step-by-step guide covers everything you need to develop efficient data integration and data transformation solutions for your organization Who This Book Is For This book is ideal for software engineers, DW/ETL architects, and ETL developers who need to create a new, or enhance an existing, ETL implementation with SQL Server 2017 Integration Services. This book would also be good for individuals who develop ETL solutions that use SSIS and are keen to learn the new features and capabilities in SSIS 2017. What You Will Learn Understand the key components of an ETL solution using SQL Server 2016-2017 Integration Services Design the architecture of a modern ETL solution Have a good knowledge of the new capabilities and features added to Integration Services Implement ETL solutions using Integration Services for both on-premises and Azure data Improve the performance and scalability of an ETL solution Enhance the ETL solution using a custom framework Be able to work on the ETL solution with many other developers and have common design paradigms or techniques Effectively use scripting to solve complex data issues In Detail SQL Server Integration Services is a tool that facilitates data extraction, consolidation, and loading options (ETL), SQL Server coding enhancements, data warehousing, and customizations. With the help of the recipes in this book, you'll gain complete hands-on experience of SSIS 2017 as well as the 2016 new features, design and development improvements including SCD, Tuning, and Customizations. At the start, you'll learn to install and set up SSIS as well other SQL Server resources to make optimal use of this Business Intelligence tools. We'll begin by taking you through the new features in SSIS 2016/2017 and implementing the necessary features to get a modern scalable ETL solution that fits the modern data warehouse. Through the course of chapters, you will learn how to design and build SSIS data warehouses packages using SQL Server Data Tools. Additionally, you'll learn to develop SSIS packages designed to maintain a data warehouse using the Data Flow and other control flow tasks. You'll also be demonstrated many recipes on cleansing data and how to get the end result after applying different transformations. Some real-world scenarios that you might face are also covered and how to handle various issues that you might face when designing your packages. At the end of this book, you'll get to know all the key concepts to perform data integration and transformation. You'll have explored on-premises Big Data integration processes to create a classic data warehouse, and will know how to extend the toolbox with custom tasks and transforms. Style and approach This cookbook follows a problem-solution approach and tackles all kinds of data integration scenarios by using the capabilities of SQL Server 2016 Integration Services. This book is well supplemented with screenshots, tips, and tricks. Each recipe focuses on a particular task and is written in a very easy-to-follow manner.

Hands-On SQL Server 2019 Analysis Services

Hands-On SQL Server 2019 Analysis Services
Title Hands-On SQL Server 2019 Analysis Services PDF eBook
Author Steven Hughes
Publisher Packt Publishing Ltd
Pages 475
Release 2020-10-22
Genre Computers
ISBN 180020163X

Download Hands-On SQL Server 2019 Analysis Services Book in PDF, Epub and Kindle

Get up to speed with the new features added to Microsoft SQL Server 2019 Analysis Services and create models to support your business Key FeaturesExplore tips and tricks to design, develop, and optimize end-to-end data analytics solutions using Microsoft's technologiesLearn tabular modeling and multi-dimensional cube design development using real-world examplesImplement Analysis Services to help you make productive business decisionsBook Description SQL Server Analysis Services (SSAS) continues to be a leading enterprise-scale toolset, enabling customers to deliver data and analytics across large datasets with great performance. This book will help you understand MS SQL Server 2019’s new features and improvements, especially when it comes to SSAS. First, you’ll cover a quick overview of SQL Server 2019, learn how to choose the right analytical model to use, and understand their key differences. You’ll then explore how to create a multi-dimensional model with SSAS and expand on that model with MDX. Next, you’ll create and deploy a tabular model using Microsoft Visual Studio and Management Studio. You'll learn when and how to use both tabular and multi-dimensional model types, how to deploy and configure your servers to support them, and design principles that are relevant to each model. The book comes packed with tips and tricks to build measures, optimize your design, and interact with models using Excel and Power BI. All this will help you visualize data to gain useful insights and make better decisions. Finally, you’ll discover practices and tools for securing and maintaining your models once they are deployed. By the end of this MS SQL Server book, you’ll be able to choose the right model and build and deploy it to support the analytical needs of your business. What you will learnDetermine the best analytical model using SSASCover the core aspects involved in MDX, including writing your first queryImplement calculated tables and calculation groups (new in version 2019) in DAXCreate and deploy tabular and multi-dimensional models on SQL 2019Connect and create data visualizations using Excel and Power BIImplement row-level and other data security methods with tabular and multi-dimensional modelsExplore essential concepts and techniques to scale, manage, and optimize your SSAS solutionsWho this book is for This Microsoft SQL Server book is for BI professionals and data analysts who are looking for a practical guide to creating and maintaining tabular and multi-dimensional models using SQL Server 2019 Analysis Services. A basic working knowledge of BI solutions such as Power BI and database querying is required.