Handbook of Teichmüller Theory
Title | Handbook of Teichmüller Theory PDF eBook |
Author | Athanase Papadopoulos |
Publisher | European Mathematical Society |
Pages | 888 |
Release | 2007 |
Genre | Mathematics |
ISBN | 9783037190555 |
This multi-volume set deals with Teichmuller theory in the broadest sense, namely, as the study of moduli space of geometric structures on surfaces, with methods inspired or adapted from those of classical Teichmuller theory. The aim is to give a complete panorama of this generalized Teichmuller theory and of its applications in various fields of mathematics. The volumes consist of chapters, each of which is dedicated to a specific topic. The volume has 19 chapters and is divided into four parts: The metric and the analytic theory (uniformization, Weil-Petersson geometry, holomorphic families of Riemann surfaces, infinite-dimensional Teichmuller spaces, cohomology of moduli space, and the intersection theory of moduli space). The group theory (quasi-homomorphisms of mapping class groups, measurable rigidity of mapping class groups, applications to Lefschetz fibrations, affine groups of flat surfaces, braid groups, and Artin groups). Representation spaces and geometric structures (trace coordinates, invariant theory, complex projective structures, circle packings, and moduli spaces of Lorentz manifolds homeomorphic to the product of a surface with the real line). The Grothendieck-Teichmuller theory (dessins d'enfants, Grothendieck's reconstruction principle, and the Teichmuller theory of the solenoid). This handbook is an essential reference for graduate students and researchers interested in Teichmuller theory and its ramifications, in particular for mathematicians working in topology, geometry, algebraic geometry, dynamical systems and complex analysis. The authors are leading experts in the field.
Handbook of Teichmüller Theory
Title | Handbook of Teichmüller Theory PDF eBook |
Author | Athanase Papadopoulos |
Publisher | European Mathematical Society |
Pages | 812 |
Release | 2007 |
Genre | Mathematics |
ISBN | 9783037190296 |
The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.
Handbook of Teichmüller Theory
Title | Handbook of Teichmüller Theory PDF eBook |
Author | Athanase Papadopoulos |
Publisher | |
Pages | 588 |
Release | 2016 |
Genre | Teichmüller spaces |
ISBN | 9783037191606 |
Handbook of Homotopy Theory
Title | Handbook of Homotopy Theory PDF eBook |
Author | Haynes Miller |
Publisher | CRC Press |
Pages | 1142 |
Release | 2020-01-23 |
Genre | Mathematics |
ISBN | 1351251600 |
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
Decorated Teichmüller Theory
Title | Decorated Teichmüller Theory PDF eBook |
Author | R. C. Penner |
Publisher | European Mathematical Society |
Pages | 388 |
Release | 2012 |
Genre | Mathematics |
ISBN | 9783037190753 |
There is an essentially ``tinker-toy'' model of a trivial bundle over the classical Teichmuller space of a punctured surface, called the decorated Teichmuller space, where the fiber over a point is the space of all tuples of horocycles, one about each puncture. This model leads to an extension of the classical mapping class groups called the Ptolemy groupoids and to certain matrix models solving related enumerative problems, each of which has proved useful both in mathematics and in theoretical physics. These spaces enjoy several related parametrizations leading to a rich and intricate algebro-geometric structure tied to the already elaborate combinatorial structure of the tinker-toy model. Indeed, the natural coordinates give the prototypical examples not only of cluster algebras but also of tropicalization. This interplay of combinatorics and coordinates admits further manifestations, for example, in a Lie theory for homeomorphisms of the circle, in the geometry underlying the Gauss product, in profinite and pronilpotent geometry, in the combinatorics underlying conformal and topological quantum field theories, and in the geometry and combinatorics of macromolecules. This volume gives the story a wider context of these decorated Teichmuller spaces as developed by the author over the last two decades in a series of papers, some of them in collaboration. Sometimes correcting errors or typos, sometimes simplifying proofs, and sometimes articulating more general formulations than the original research papers, this volume is self contained and requires little formal background. Based on a master's course at Aarhus University, it gives the first treatment of these works in monographic form.
The Complex Analytic Theory of Teichmuller Spaces
Title | The Complex Analytic Theory of Teichmuller Spaces PDF eBook |
Author | Subhashis Nag |
Publisher | Wiley-Interscience |
Pages | 456 |
Release | 1988-03-03 |
Genre | Mathematics |
ISBN |
An accessible, self-contained treatment of the complex structure of the Teichmüller moduli spaces of Riemann surfaces. Complex analysts, geometers, and especially string theorists (!) will find this work indispensable. The Teichmüller space, parametrizing all the various complex structures on a given surface, itself carries (in a completely natural way) the complex structure of a finite- or infinite-dimensional complex manifold. Nag emphasizes the Bers embedding of Teichmüller spaces and deals with various types of complex-analytic coördinates for them. This is the first book in which a complete exposition is given of the most basic fact that the Bers projection from Beltrami differentials onto Teichmüller space is a complex analytic submersion. The fundamental universal property enjoyed by Teichmüller space is given two proofs and the Bers complex boundary is examined to the point where totally degenerate Kleinian groups make their spectacular appearance. Contains much material previously unpublished.
Lipman Bers, a Life in Mathematics
Title | Lipman Bers, a Life in Mathematics PDF eBook |
Author | Linda Keen |
Publisher | American Mathematical Soc. |
Pages | 362 |
Release | 2015-09-15 |
Genre | Biography & Autobiography |
ISBN | 1470420562 |
The book is part biography and part collection of mathematical essays that gives the reader a perspective on the evolution of an interesting mathematical life. It is all about Lipman Bers, a giant in the mathematical world who lived in turbulent and exciting times. It captures the essence of his mathematics, a development and transition from applied mathematics to complex analysis--quasiconformal mappings and moduli of Riemann surfaces--and the essence of his personality, a progression from a young revolutionary refugee to an elder statesman in the world of mathematics and a fighter for global human rights and the end of political torture. The book contains autobiographical material and short reprints of his work. The main content is in the exposition of his research contributions, sometimes with novel points of view, by students, grand-students, and colleagues. The research described was fundamental to the growth of a central part of 20th century mathematics that, now in the 21st century, is in a healthy state with much current interest and activity. The addition of personal recollections, professional tributes, and photographs yields a picture of a man, his personal and professional family, and his time.