Handbook of Mathematical Models in Computer Vision
Title | Handbook of Mathematical Models in Computer Vision PDF eBook |
Author | Nikos Paragios |
Publisher | Springer Science & Business Media |
Pages | 648 |
Release | 2005-10-31 |
Genre | Computers |
ISBN | 9780387263717 |
Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.
Handbook of Mathematical Models in Computer Vision
Title | Handbook of Mathematical Models in Computer Vision PDF eBook |
Author | Nikos Paragios |
Publisher | Springer Science & Business Media |
Pages | 612 |
Release | 2006-01-16 |
Genre | Computers |
ISBN | 0387288317 |
Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
Title | Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging PDF eBook |
Author | Ke Chen |
Publisher | Springer Nature |
Pages | 1981 |
Release | 2023-02-24 |
Genre | Mathematics |
ISBN | 3030986616 |
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
Handbook Of Pattern Recognition And Computer Vision (2nd Edition)
Title | Handbook Of Pattern Recognition And Computer Vision (2nd Edition) PDF eBook |
Author | Chi Hau Chen |
Publisher | World Scientific |
Pages | 1045 |
Release | 1999-03-12 |
Genre | Computers |
ISBN | 9814497649 |
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Handbook of Computer Vision and Applications: Systems and applications
Title | Handbook of Computer Vision and Applications: Systems and applications PDF eBook |
Author | Bernd Jähne |
Publisher | |
Pages | 968 |
Release | 1999 |
Genre | Computers |
ISBN |
CD-ROM files contain complete text of all three print vols., as well as hyperlinks to figures, tables, etc. and between the index and the text. Also included are hyperlinks to movies, interactive 3-D models, demonstration software and other materials not contained in the print version.
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
Title | Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging PDF eBook |
Author | Ke Chen |
Publisher | |
Pages | |
Release | 2021 |
Genre | Computer algorithms |
ISBN | 9783030030094 |
Computer Vision
Title | Computer Vision PDF eBook |
Author | Simon J. D. Prince |
Publisher | Cambridge University Press |
Pages | 599 |
Release | 2012-06-18 |
Genre | Computers |
ISBN | 1107011795 |
A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.