Handbook of Linear Algebra, Second Edition
Title | Handbook of Linear Algebra, Second Edition PDF eBook |
Author | Leslie Hogben |
Publisher | CRC Press |
Pages | 1906 |
Release | 2013-11-26 |
Genre | Mathematics |
ISBN | 1466507284 |
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.
The Student's Introduction to MATHEMATICA ®
Title | The Student's Introduction to MATHEMATICA ® PDF eBook |
Author | Bruce F. Torrence |
Publisher | Cambridge University Press |
Pages | 484 |
Release | 2009-01-29 |
Genre | Computers |
ISBN | 1139473735 |
The unique feature of this compact student's introduction is that it presents concepts in an order that closely follows a standard mathematics curriculum, rather than structure the book along features of the software. As a result, the book provides a brief introduction to those aspects of the Mathematica software program most useful to students. The second edition of this well loved book is completely rewritten for Mathematica 6 including coverage of the new dynamic interface elements, several hundred exercises and a new chapter on programming. This book can be used in a variety of courses, from precalculus to linear algebra. Used as a supplementary text it will aid in bridging the gap between the mathematics in the course and Mathematica. In addition to its course use, this book will serve as an excellent tutorial for those wishing to learn Mathematica and brush up on their mathematics at the same time.
A Second Course in Linear Algebra
Title | A Second Course in Linear Algebra PDF eBook |
Author | Stephan Ramon Garcia |
Publisher | Cambridge University Press |
Pages | 447 |
Release | 2017-05-11 |
Genre | Mathematics |
ISBN | 1107103819 |
A second course in linear algebra for undergraduates in mathematics, computer science, physics, statistics, and the biological sciences.
No Bullshit Guide to Linear Algebra
Title | No Bullshit Guide to Linear Algebra PDF eBook |
Author | Ivan Savov |
Publisher | |
Pages | 596 |
Release | 2020-10-25 |
Genre | MATHEMATICS |
ISBN | 9780992001025 |
This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
Introduction to Applied Linear Algebra
Title | Introduction to Applied Linear Algebra PDF eBook |
Author | Stephen Boyd |
Publisher | Cambridge University Press |
Pages | 477 |
Release | 2018-06-07 |
Genre | Business & Economics |
ISBN | 1316518965 |
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Linear Algebra and Matrix Analysis for Statistics
Title | Linear Algebra and Matrix Analysis for Statistics PDF eBook |
Author | Sudipto Banerjee |
Publisher | CRC Press |
Pages | 586 |
Release | 2014-06-06 |
Genre | Mathematics |
ISBN | 1420095382 |
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
Applied Linear Algebra
Title | Applied Linear Algebra PDF eBook |
Author | Peter J. Olver |
Publisher | Springer |
Pages | 702 |
Release | 2018-05-30 |
Genre | Mathematics |
ISBN | 3319910418 |
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the underlying linear algebraic techniques, thereby enabling students not only to learn how to apply the mathematical tools in routine contexts, but also to understand what is required to adapt to unusual or emerging problems. No previous knowledge of linear algebra is needed to approach this text, with single-variable calculus as the only formal prerequisite. However, the reader will need to draw upon some mathematical maturity to engage in the increasing abstraction inherent to the subject. Once equipped with the main tools and concepts from this book, students will be prepared for further study in differential equations, numerical analysis, data science and statistics, and a broad range of applications. The first author’s text, Introduction to Partial Differential Equations, is an ideal companion volume, forming a natural extension of the linear mathematical methods developed here.