Handbook of Graph Theory
Title | Handbook of Graph Theory PDF eBook |
Author | Jonathan L. Gross |
Publisher | CRC Press |
Pages | 1200 |
Release | 2003-12-29 |
Genre | Computers |
ISBN | 9780203490204 |
The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approach
Handbook of Graph Theory, Second Edition
Title | Handbook of Graph Theory, Second Edition PDF eBook |
Author | Jonathan L. Gross |
Publisher | CRC Press |
Pages | 1634 |
Release | 2013-12-17 |
Genre | Mathematics |
ISBN | 1439880182 |
In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition—over 400 pages longer than its predecessor—incorporates 14 new sections. Each chapter includes lists of essential definitions and facts, accompanied by examples, tables, remarks, and, in some cases, conjectures and open problems. A bibliography at the end of each chapter provides an extensive guide to the research literature and pointers to monographs. In addition, a glossary is included in each chapter as well as at the end of each section. This edition also contains notes regarding terminology and notation. With 34 new contributors, this handbook is the most comprehensive single-source guide to graph theory. It emphasizes quick accessibility to topics for non-experts and enables easy cross-referencing among chapters.
Handbook of Product Graphs
Title | Handbook of Product Graphs PDF eBook |
Author | Richard Hammack |
Publisher | CRC Press |
Pages | 537 |
Release | 2011-06-06 |
Genre | Computers |
ISBN | 1439813051 |
This handbook examines the dichotomy between the structure of products and their subgraphs. It also features the design of efficient algorithms that recognize products and their subgraphs and explores the relationship between graph parameters of the product and factors. Extensively revised and expanded, this second edition presents full proofs of many important results as well as up-to-date research and conjectures. It illustrates applications of graph products in several areas and contains well over 300 exercises. Supplementary material is available on the book's website.
Combinatorics and Graph Theory
Title | Combinatorics and Graph Theory PDF eBook |
Author | John Harris |
Publisher | Springer Science & Business Media |
Pages | 392 |
Release | 2009-04-03 |
Genre | Mathematics |
ISBN | 0387797114 |
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Graphs and Matrices
Title | Graphs and Matrices PDF eBook |
Author | Ravindra B. Bapat |
Publisher | Springer |
Pages | 197 |
Release | 2014-09-19 |
Genre | Mathematics |
ISBN | 1447165691 |
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
A Textbook of Graph Theory
Title | A Textbook of Graph Theory PDF eBook |
Author | R. Balakrishnan |
Publisher | Springer Science & Business Media |
Pages | 296 |
Release | 2012-09-20 |
Genre | Mathematics |
ISBN | 1461445280 |
In its second edition, expanded with new chapters on domination in graphs and on the spectral properties of graphs, this book offers a solid background in the basics of graph theory. Introduces such topics as Dirac's theorem on k-connected graphs and more.
Handbook of Discrete and Computational Geometry
Title | Handbook of Discrete and Computational Geometry PDF eBook |
Author | Csaba D. Toth |
Publisher | CRC Press |
Pages | 1008 |
Release | 1997-07-15 |
Genre | Mathematics |
ISBN | 9780849385247 |
Jacob E. Goodman, co-founder and editor of Discrete & Computational Geometry, the preeminent journal on this area in the international mathematics and computer science community, joins forces with the distinguished computer scientist Joseph O'Rourke and other well-known authorities to produce the definitive handbook on these two interrelated fields. Over the past decade or so, researchers and professionals in discrete geometry and the newer field of computational geometry have developed a highly productive collaborative relationship, where each area benefits from the methods and insights of the other. At the same time that discrete and computational geometry are becoming more closely identified, applications of the results of this work are being used in an increasing number of widely differing areas, from computer graphics and linear programming to manufacturing and robotics. The authors have answered the need for a comprehensive handbook for workers in these and related fields, and for other users of the body of results. While much information can be found on discrete and computational geometry, it is scattered among many sources, and individual books and articles are often narrowly focused. Handbook of Discrete and Computational Geometry brings together, for the first time, all of the major results in both these fields into one volume. Thousands of results - theorems, algorithms, and tables - throughout the volume definitively cover the field, while numerous applications from many different fields demonstrate practical usage. The material is presented clearly enough to assist the novice, but in enough depth to appeal to the specialist. Every technical term is clearly defined in an easy-to-use glossary. Over 200 figures illustrate the concepts presented and provide supporting examples. Information on current geometric software - what it does, how efficiently it does it, and where to find it - is also included.