Handbook of Fitting Statistical Distributions with R
Title | Handbook of Fitting Statistical Distributions with R PDF eBook |
Author | Zaven A. Karian |
Publisher | Chapman and Hall/CRC |
Pages | 1718 |
Release | 2010-10-01 |
Genre | Mathematics |
ISBN | 9781584887119 |
With the development of new fitting methods, their increased use in applications, and improved computer languages, the fitting of statistical distributions to data has come a long way since the introduction of the generalized lambda distribution (GLD) in 1969. Handbook of Fitting Statistical Distributions with R presents the latest and best methods, algorithms, and computations for fitting distributions to data. It also provides in-depth coverage of cutting-edge applications. The book begins with commentary by three GLD pioneers: John S. Ramberg, Bruce Schmeiser, and Pandu R. Tadikamalla. These leaders of the field give their perspectives on the development of the GLD. The book then covers GLD methodology and Johnson, kappa, and response modeling methodology fitting systems. It also describes recent additions to GLD and generalized bootstrap methods as well as a new approach to goodness-of-fit assessment. The final group of chapters explores real-world applications in agriculture, reliability estimation, hurricanes/typhoons/cyclones, hail storms, water systems, insurance and inventory management, and materials science. The applications in these chapters complement others in the book that deal with competitive bidding, medicine, biology, meteorology, bioassays, economics, quality management, engineering, control, and planning. New results in the field have generated a rich array of methods for practitioners. Making sense of this extensive growth, this comprehensive and authoritative handbook improves your understanding of the methodology and applications of fitting statistical distributions. The accompanying CD-ROM includes the R programs used for many of the computations.
Handbook of Fitting Statistical Distributions with R
Title | Handbook of Fitting Statistical Distributions with R PDF eBook |
Author | Zaven A. Karian |
Publisher | CRC Press |
Pages | 1722 |
Release | 2016-04-19 |
Genre | Mathematics |
ISBN | 1584887125 |
With the development of new fitting methods, their increased use in applications, and improved computer languages, the fitting of statistical distributions to data has come a long way since the introduction of the generalized lambda distribution (GLD) in 1969. Handbook of Fitting Statistical Distributions with R presents the latest and best methods
Fitting Statistical Distributions
Title | Fitting Statistical Distributions PDF eBook |
Author | Zaven A. Karian |
Publisher | CRC Press |
Pages | 458 |
Release | 2000-05-24 |
Genre | Mathematics |
ISBN | 1420038044 |
Although the study of statistical modelling has made great strides in recent years, the number and variety of distributions to choose from continue to create problems. . Focusing on techniques used successfully across many fields, Fitting Statistical Distributions presents all of the relevant results related to the Generalized Lambda Distribution, the Generalized Bootstrap, and Monte Carlo simulation. It provides the tables, algorithms, and computer programs needed for fitting continuous probability distributions to data in a wide variety of circumstances-covering bivariate as well as univariate distributions, and including situations where moments do not exist.
The Book of R
Title | The Book of R PDF eBook |
Author | Tilman M. Davies |
Publisher | No Starch Press |
Pages | 833 |
Release | 2016-07-16 |
Genre | Computers |
ISBN | 1593276516 |
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
The R Book
Title | The R Book PDF eBook |
Author | Michael J. Crawley |
Publisher | John Wiley & Sons |
Pages | 953 |
Release | 2007-06-13 |
Genre | Mathematics |
ISBN | 9780470515068 |
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Quantile-Based Reliability Analysis
Title | Quantile-Based Reliability Analysis PDF eBook |
Author | N. Unnikrishnan Nair |
Publisher | Springer Science & Business Media |
Pages | 411 |
Release | 2013-08-24 |
Genre | Mathematics |
ISBN | 0817683615 |
This book provides a fresh approach to reliability theory, an area that has gained increasing relevance in fields from statistics and engineering to demography and insurance. Its innovative use of quantile functions gives an analysis of lifetime data that is generally simpler, more robust, and more accurate than the traditional methods, and opens the door for further research in a wide variety of fields involving statistical analysis. In addition, the book can be used to good effect in the classroom as a text for advanced undergraduate and graduate courses in Reliability and Statistics.
Modern Statistics with R
Title | Modern Statistics with R PDF eBook |
Author | Måns Thulin |
Publisher | |
Pages | 0 |
Release | 2024 |
Genre | Mathematics |
ISBN | 9781032497457 |
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.