Handbook of Differential Equations:Stationary Partial Differential Equations
Title | Handbook of Differential Equations:Stationary Partial Differential Equations PDF eBook |
Author | Michel Chipot |
Publisher | Elsevier |
Pages | 625 |
Release | 2005-08-19 |
Genre | Mathematics |
ISBN | 0080461077 |
A collection of self contained, state-of-the-art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.Partial differential equations represent one of the most rapidly developing topics in mathematics. This is due to their numerous applications in science and engineering on the one hand and to the challenge and beauty of associated mathematical problems on the other.Key features:- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.
Handbook of Differential Equations: Stationary Partial Differential Equations
Title | Handbook of Differential Equations: Stationary Partial Differential Equations PDF eBook |
Author | Michel Chipot |
Publisher | Elsevier |
Pages | 618 |
Release | 2011-08-11 |
Genre | Mathematics |
ISBN | 0080560598 |
This handbook is the sixth and last volume in the series devoted to stationary partial differential equations. The topics covered by this volume include in particular domain perturbations for boundary value problems, singular solutions of semilinear elliptic problems, positive solutions to elliptic equations on unbounded domains, symmetry of solutions, stationary compressible Navier-Stokes equation, Lotka-Volterra systems with cross-diffusion, and fixed point theory for elliptic boundary value problems.* Collection of self-contained, state-of-the-art surveys* Written by well-known experts in the field* Informs and updates on all the latest developments
Handbook of Linear Partial Differential Equations for Engineers and Scientists
Title | Handbook of Linear Partial Differential Equations for Engineers and Scientists PDF eBook |
Author | Andrei D. Polyanin |
Publisher | CRC Press |
Pages | 800 |
Release | 2001-11-28 |
Genre | Mathematics |
ISBN | 1420035320 |
Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with
Handbook of Differential Equations
Title | Handbook of Differential Equations PDF eBook |
Author | Michel Chipot |
Publisher | |
Pages | 725 |
Release | 2004 |
Genre | Differential equations |
ISBN | 9780444511263 |
Handbook of Nonlinear Partial Differential Equations
Title | Handbook of Nonlinear Partial Differential Equations PDF eBook |
Author | Andrei D. Polyanin |
Publisher | CRC Press |
Pages | 835 |
Release | 2004-06-02 |
Genre | Mathematics |
ISBN | 1135440816 |
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
Handbook of Differential Equations: Stationary Partial Differential Equations
Title | Handbook of Differential Equations: Stationary Partial Differential Equations PDF eBook |
Author | Michel Chipot |
Publisher | Elsevier |
Pages | 736 |
Release | 2004-07-06 |
Genre | Mathematics |
ISBN | 0080495060 |
The book could be a good companion for any graduate student in partial differential equations or in applied mathematics. Each chapter brings indeed new ideas and new techniques which can be used in these fields. The differents chapters can be read independently and are of great pedagogical value. The advanced researcher will find along the book the most recent achievements in various fields. - Independent chapters - Most recent advances in each fields - Hight didactic quality - Self contained - Excellence of the contributors - Wide range of topics
Energy Methods for Free Boundary Problems
Title | Energy Methods for Free Boundary Problems PDF eBook |
Author | S.N. Antontsev |
Publisher | Springer Science & Business Media |
Pages | 338 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1461200911 |
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.