Hamiltonian Chaos Beyond the KAM Theory

Hamiltonian Chaos Beyond the KAM Theory
Title Hamiltonian Chaos Beyond the KAM Theory PDF eBook
Author Albert C. J. Luo
Publisher Springer Science & Business Media
Pages 312
Release 2011-01-04
Genre Science
ISBN 3642127185

Download Hamiltonian Chaos Beyond the KAM Theory Book in PDF, Epub and Kindle

“Hamiltonian Chaos Beyond the KAM Theory: Dedicated to George M. Zaslavsky (1935—2008)” covers the recent developments and advances in the theory and application of Hamiltonian chaos in nonlinear Hamiltonian systems. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. Each chapter in this book was written by well-established scientists in the field of nonlinear Hamiltonian systems. The development presented in this book goes beyond the KAM theory, and the onset and disappearance of chaos in the stochastic and resonant layers of nonlinear Hamiltonian systems are predicted analytically, instead of qualitatively. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.

Quasi-Periodic Motions in Families of Dynamical Systems

Quasi-Periodic Motions in Families of Dynamical Systems
Title Quasi-Periodic Motions in Families of Dynamical Systems PDF eBook
Author Hendrik W. Broer
Publisher Springer
Pages 203
Release 2009-01-25
Genre Mathematics
ISBN 3540496130

Download Quasi-Periodic Motions in Families of Dynamical Systems Book in PDF, Epub and Kindle

This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. Such a motion in the phase space densely fills up an invariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori. On the other hand, systems exist that are entirely chaotic on each energy level. In between we know systems that, being sufficiently small perturbations of integrable ones, exhibit coexistence of order (invariant tori carrying quasi-periodic dynamics) and chaos (the so called stochastic layers). The Kolmogorov-Arnol'd-Moser (KAM) theory on quasi-periodic motions tells us that the occurrence of such motions is open within the class of all Hamiltonian systems: in other words, it is a phenomenon persistent under small Hamiltonian perturbations. Moreover, generally, for any such system the union of quasi-periodic tori in the phase space is a nowhere dense set of positive Lebesgue measure, a so called Cantor family. This fact implies that open classes of Hamiltonian systems exist that are not ergodic. The main aim of the book is to study the changes in this picture when other classes of systems - or contexts - are considered.

Galileo Unbound

Galileo Unbound
Title Galileo Unbound PDF eBook
Author David D. Nolte
Publisher Oxford University Press
Pages 384
Release 2018-07-12
Genre Science
ISBN 0192528505

Download Galileo Unbound Book in PDF, Epub and Kindle

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

Hamiltonian Chaos and Fractional Dynamics

Hamiltonian Chaos and Fractional Dynamics
Title Hamiltonian Chaos and Fractional Dynamics PDF eBook
Author George M. Zaslavsky
Publisher Oxford University Press on Demand
Pages 436
Release 2005
Genre Mathematics
ISBN 0198526040

Download Hamiltonian Chaos and Fractional Dynamics Book in PDF, Epub and Kindle

This books gives a realistic contemporary image of Hamiltonian dynamics, dealing with the basic principles of the Hamiltonian theory of chaos in addition to very recent and unusual applications of nonlinear dynamics and the fractality of dynamics.

The Physics of Chaos in Hamiltonian Systems

The Physics of Chaos in Hamiltonian Systems
Title The Physics of Chaos in Hamiltonian Systems PDF eBook
Author George M. Zaslavsky
Publisher Imperial College Press
Pages 337
Release 2007
Genre Mathematics
ISBN 1860948618

Download The Physics of Chaos in Hamiltonian Systems Book in PDF, Epub and Kindle

This book aims to familiarize the reader with the essential properties of the chaotic dynamics of Hamiltonian systems by avoiding specialized mathematical tools, thus making it easily accessible to a broader audience of researchers and students. Unique material on the most intriguing and fascinating topics of unsolved and current problems in contemporary chaos theory is presented. The coverage includes: separatrix chaos; properties and a description of systems with non-ergodic dynamics; the distribution of Poincar(r) recurrences and their role in transport theory; dynamical models of the MaxwellOCOs Demon, the occurrence of persistent fluctuations, and a detailed discussion of their role in the problem underlying the foundation of statistical physics; the emergence of stochastic webs in phase space and their link to space tiling with periodic (crystal type) and aperiodic (quasi-crystal type) symmetries. This second edition expands on pseudochaotic dynamics with weak mixing and the new phenomenon of fractional kinetics, which is crucial to the transport properties of chaotic motion. The book is ideally suited to all those who are actively working on the problems of dynamical chaos as well as to those looking for new inspiration in this area. It introduces the physicist to the world of Hamiltonian chaos and the mathematician to actual physical problems.The material can also be used by graduate students."

Physics Of Chaos In Hamiltonian Systems, The (2nd Edition)

Physics Of Chaos In Hamiltonian Systems, The (2nd Edition)
Title Physics Of Chaos In Hamiltonian Systems, The (2nd Edition) PDF eBook
Author George Zaslavsky
Publisher World Scientific
Pages 337
Release 2007-05-21
Genre Science
ISBN 1908979232

Download Physics Of Chaos In Hamiltonian Systems, The (2nd Edition) Book in PDF, Epub and Kindle

This book aims to familiarize the reader with the essential properties of the chaotic dynamics of Hamiltonian systems by avoiding specialized mathematical tools, thus making it easily accessible to a broader audience of researchers and students. Unique material on the most intriguing and fascinating topics of unsolved and current problems in contemporary chaos theory is presented. The coverage includes: separatrix chaos; properties and a description of systems with non-ergodic dynamics; the distribution of Poincaré recurrences and their role in transport theory; dynamical models of the Maxwell's Demon, the occurrence of persistent fluctuations, and a detailed discussion of their role in the problem underlying the foundation of statistical physics; the emergence of stochastic webs in phase space and their link to space tiling with periodic (crystal type) and aperiodic (quasi-crystal type) symmetries.This second edition expands on pseudochaotic dynamics with weak mixing and the new phenomenon of fractional kinetics, which is crucial to the transport properties of chaotic motion.The book is ideally suited to all those who are actively working on the problems of dynamical chaos as well as to those looking for new inspiration in this area. It introduces the physicist to the world of Hamiltonian chaos and the mathematician to actual physical problems.The material can also be used by graduate students./a

Construction of Mappings for Hamiltonian Systems and Their Applications

Construction of Mappings for Hamiltonian Systems and Their Applications
Title Construction of Mappings for Hamiltonian Systems and Their Applications PDF eBook
Author Sadrilla S. Abdullaev
Publisher Springer
Pages 384
Release 2006-08-02
Genre Science
ISBN 3540334173

Download Construction of Mappings for Hamiltonian Systems and Their Applications Book in PDF, Epub and Kindle

Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical problems described by Hamiltonian systems. It develops a new, mathematically-rigorous method to construct symplectic mappings which replaces the dynamics of continuous Hamiltonian systems by the discrete ones. Applications of the mapping methods encompass the chaos theory in non-twist and non-smooth dynamical systems, the structure and chaotic transport in the stochastic layer, the magnetic field lines in magnetically confinement devices of plasmas, ray dynamics in waveguides, etc. The book is intended for postgraduate students and researches, physicists and astronomers working in the areas of plasma physics, hydrodynamics, celestial mechanics, dynamical astronomy, and accelerator physics. It should also be useful for applied mathematicians involved in analytical and numerical studies of dynamical systems.