Guidelines for green concrete structures
Title | Guidelines for green concrete structures PDF eBook |
Author | fib Fédération internationale du béton |
Publisher | fib Fédération internationale du béton |
Pages | 62 |
Release | 2011-10-01 |
Genre | Technology & Engineering |
ISBN | 2883941076 |
The Sustainable Concrete Guide
Title | The Sustainable Concrete Guide PDF eBook |
Author | Andrea Jeanne Schokker |
Publisher | |
Pages | 86 |
Release | 2010 |
Genre | Reinforced concrete |
ISBN | 9780870313622 |
Modernisation, Mechanisation and Industrialisation of Concrete Structures
Title | Modernisation, Mechanisation and Industrialisation of Concrete Structures PDF eBook |
Author | Kim S. Elliott |
Publisher | John Wiley & Sons |
Pages | 503 |
Release | 2017-05-01 |
Genre | Technology & Engineering |
ISBN | 1118876490 |
Modernisation, Mechanisation and Industrialisation of Concrete Structures discusses the manufacture of high quality prefabricated concrete construction components, and how that can be achieved through the application of developments in concrete technology, information modelling and best practice in design and manufacturing techniques.
Integrated life cycle assessment of concrete structures
Title | Integrated life cycle assessment of concrete structures PDF eBook |
Author | fib Fédération Internationale du béton |
Publisher | fib Fédération Internationale du béton |
Pages | 70 |
Release | 2013-09-03 |
Genre | Technology & Engineering |
ISBN | 2883941114 |
Concrete is after water the second most used material. The production of concrete in the industrialized countries annually amounts to 1.5-3 tonne per capita and is still increasing. This has significant impact on the environment. Thus there is an urgent need for more effective use of concrete in structures and their assessment. The scope of activities of the fib Task Group 3.7 was to define the methodology for integrated life-cycle assessment of concrete structures considering main essential aspects of sustainability such as: environmental, economic and social aspects throughout the whole life of the concrete structure. The aim was to set up basic methodology to be helpful in development of design and assessment tools focused on sustainability of concrete structure within the whole life cycle. Integrated Life Cycle Assessment (ILCA) represents an advanced approach integrating different aspects of sustainability in one complex assessment procedure. The integrated approach is necessary to insure that the structure will serve during the whole expected service life with a maximum functional quality and safety, while environmental and economic loads will be kept at a low level. The effective application and quality of results are dependent on the availability of relevant input data obtained using a detailed inventory analysis, based on specific regional conditions. The evaluation of the real level of total quality of concrete structure should be based on a detailed ILCA analysis using regionally or locally relevant data sets.
Fibre Reinforced Concrete: From Design to Structural Applications
Title | Fibre Reinforced Concrete: From Design to Structural Applications PDF eBook |
Author | FIB – International Federation for Structural Concrete |
Publisher | FIB - International Federation for Structural Concrete |
Pages | 555 |
Release | 2020-08-01 |
Genre | Technology & Engineering |
ISBN | 2883941416 |
The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the application of FRC materials into the realm of structural engineering and design. The aim of the workshop was to provide the State-of-the-Art on the recent progress that had been made in term of specifications and actual applications for buildings, underground structures, and bridge projects worldwide. The rapid development of codes, the introduction of new materials and the growing interest of the construction industry suggested presenting this forum at closer intervals. In this context, the third international FRC workshop was held in Desenzano (Italy), four years after Montreal. In this first ACI-fib-RILEM joint technical event, the maturity gained through the recent technological developments and large-scale applications were used to show the acceptability of the concrete design using various fibre compositions. The growing interests of civil infrastructure owners in ultra-high-performance fibre-reinforced concrete (UHPFRC) and synthetic fibres in structural applications bring new challenges in terms of concrete technology and design recommendations. In such a short period of time, we have witnessed the proliferation of the use of fibres as structural reinforcement in various applications such as industrial floors, elevated slabs, precast tunnel lining sections, foundations, as well as bridge decks. We are now moving towards addressing many durability-based design requirements by the use of fibres, as well as the general serviceability-based design. However, the possibility of having a residual tensile strength after cracking of the concrete matrix requires a new conceptual approach for a proper design of FRC structural elements. With such a perspective in mind, the aim of FRC2018 workshop was to provide the State-of-the-Art on the recent progress in terms of specifications development, actual applications, and to expose users and researchers to the challenges in the design and construction of a wide variety of structural applications. Considering that at the time of the first workshop, in 2004, no structural codes were available on FRC, we have to recognize the enormous work done by researchers all over the world, who have presented at many FRC events, and convinced code bodies to include FRC among the reliable alternatives for structural applications. This will allow engineers to increasingly utilize FRC with confidence for designing safe and durable structures. Many presentations also clearly showed that FRC is a promising material for efficient rehabilitation of existing infrastructure in a broad spectrum of repair applications. These cases range from sustained gravity loads to harsh environmental conditions and seismic applications, which are some of the broadest ranges of applications in Civil Engineering. The workshop was attended by researchers, designers, owner and government representatives as well as participants from the construction and fibre industries. The presence of people with different expertise provided a unique opportunity to share knowledge and promote collaborative efforts. These interactions are essential for the common goal of making better and sustainable constructions in the near future. The workshop was attended by about 150 participants coming from 30 countries. Researchers from all the continents participated in the workshop, including 24 Ph.D. students, who brought their enthusiasm in FRC structural applications. For this reason, the workshop Co-chairs sincerely thank all the enterprises that sponsored this event. They also extend their appreciation for the support provided by the industry over the last 30 years which allowed research centers to study FRC materials and their properties, and develop applications to making its use more routine and accepted throughout the world. Their important contribution has been essential for moving the knowledge base forward. Finally, we appreciate the enormous support received from all three sponsoring organizations of ACI, fib and Rilem and look forward to paving the path for future collaborations in various areas of common interest so that the developmental work and implementation of new specifications and design procedures can be expedited internationally.
Advances on bond in concrete
Title | Advances on bond in concrete PDF eBook |
Author | FIB – International Federation for Structural Concrete |
Publisher | FIB - International Federation for Structural Concrete |
Pages | 326 |
Release | 2022-12-01 |
Genre | Technology & Engineering |
ISBN | 2883941637 |
Structural behavior of reinforced concrete elements strongly depends on the interaction between the reinforcing bars and the surrounding concrete, which is generally referred as “bond in concrete”. In service conditions, the reinforcement-to-concrete bond governs deformability through the tension stiffening of concrete surrounding the bar as well the crack development and crack width. At Ultimate Limit State, bond governs anchorage and lap splices behavior as well as structural ductility. When plain (smooth) bars were used, the steel-to-concrete bond was mainly associated with “chemical adhesion/friction” that is related to the surface roughness of the rebar. As steel strengths increased the need to enhance interaction between steel and the surrounding concrete was recognized, and square twisted rebars, indented rebars or, later on, ribbed rebars came into the market, the latter being the type of deformed bar most commonly adopted since the 1960/70s. When ribbed rebars became widely used, several research studies started worldwide for better understanding the interaction between ribs and the surrounding concrete. Researchers evidenced the development of micro-cracks (due to the wedge action of the ribs) towards the external face of the structural element. If confinement is provided by the concrete cover, by transverse reinforcement or by an external transverse pressure, the full-anchorage capacity is guaranteed and a pull-out failure occurs, with crushing of concrete between the ribs. On the contrary, with lesser confining action, a splitting failure of bond occurs; the latter may provoke a brittle failure of the lap splice or, in some cases, of anchorages. However, after many years of research studies on bond-related topics, there are still several open issues. In fact, new materials entered into the market, as concrete with recycled aggregates or fibre reinforced concrete; the latter, having a kind of distributed reinforcement into the matrix (the fibres), provides a better confinement to the wedge action of the ribs. In addition, concrete and steel strength continuously increased over the years, causing changes in the bond behavior due to differences in mechanical properties of materials but also to the different concrete composition at the interface with the steel rebar causing a different bond behavior. Moreover, the lower water/cement ratio of these high-strength concrete makes the bleeding phenomena less evident, changing the concrete porosity in the upper layers of the structural element and thus making the current casting position parameters no-longer reliable. Finally, concrete with recycled aggregates are becoming more important in a market that is looking forward to a circular economy. As such, all the experimental results and database that allowed the calibration of bond rules now present in building codes for conventional concrete, may be not be representative of these new types of materials nowadays adopted in practice. Furthermore, after more than 50 years of service life, structural elements may not satisfy the current safety requirements for several reasons, including material degradation (with particular reference to steel corrosion) or increased loads, by also considering the seismic actions that were non considered by building codes at the time of the original design. The structural assessment of existing structures requires proper conceptual models and new approaches for evaluating the reliability of existing structures by also considering the remaining expected service life. In addition, specific rules for older materials, as plain smooth bars, should be revised for a better assessment of old structures. Last, but not least, interventions in existing structures may require new technologies now available such as post-installed rebars. While many advances have been achieved, there remain areas where a better understanding of bond and its mechanisms are required, and where further work is required to incorporate this understanding into safe and economic rules to guide construction and maintenance of existing infrastructures. These aspects were widely discussed within the technical community, particularly in the fib Task Group 2.5 and in the ACI 408 Committee dealing with bond and anchorage issues. Furthermore, special opportunities for discussing bond developments were represented by the International Conferences on ‘Bond in Concrete’ held each decade since 1982 as well as by joint workshops organized by fib TG2.5 and ACI 408. Within this technical collaboration, this Bulletin was conceived, and, thus, it collects selected papers presented at the joint fib-ACI Convention Session on Bond in Concrete held in Detroit (USA) in 2017. The bulletin is based on four main Sections concerning: - General aspects of bond - Anchorages and laps of bars and prestressing tendons - Bond under severe conditions - Degradation of bond for corrosion - Bond in new types of concrete The main aim of the Bulletin is to shed some new lights on the advances in understanding and application of bond related issues achieved over the last few years, and identify the challenges and priorities to be addressed in the next years. Another important aspect of the bulletin is to provide practical information from research findings.
Punching shear of structural concrete slabs
Title | Punching shear of structural concrete slabs PDF eBook |
Author | FIB - Féd. Int. du Béton |
Publisher | FIB - Féd. Int. du Béton |
Pages | 396 |
Release | 2017 |
Genre | Technology & Engineering |
ISBN | 2883941211 |
fib Bulletin 81 reports the latest information available to researchers and practitioners on the analysis, design and experimental evidence of punching shear of structural concrete slabs. It follows previous efforts by the International Federation for Structural Concrete (fib) and its predecessor the Euro-International Committee for Concrete (CEB), through CEB Bulletin 168, Punching Shear in Reinforced Concrete (1985) and fibBulletin 12, Punching of structural concrete slabs (2001), and an international symposium sponsored by the punching shear subcommittee of ACI Committee 445 (Shear and Torsion) and held in Kansas City, Mo., USA, in 2005. This bulletin contains 18 papers that were presented in three sessions as part of an international symposium held in Philadelphia, Pa., USA, on October 25, 2016. The symposium was co-organized by the punching shear sub-committee of ACI 445 and by fib Working Party 2.2.3 (Punching and Shear in Slabs) with the objectives of not only disseminating information on this important design subject but also promoting harmonization among the various design theories and treatment of key aspects of punching shear design. The papers are organized in the same order they were presented in the symposium. The symposium honored Professor Emeritus Neil M. Hawkins (University of Illinois at Urbana-Champaign, USA), whose contributions through the years in the field of punching shear of structural concrete slabs have been paramount. The papers cover key aspects related to punching shear of structural concrete slabs under different loading conditions, the study of size effect on punching capacity of slabs, the effect of slab reinforcement ratio on the response and failure mode of slabs, without and with shear reinforcement, and its implications for the design and formulation in codes of practice, an examination of different analytical tools to predict the punching shear response of slabs, the study of the post-punching response of concrete slabs, the evaluation of design provisions in modern codes based on recent experimental evidence and new punching shear theories, and an overview of the combined efforts undertaken jointly by ACI 445 and fib WP 2.2.3 to generate test result databanks for the evaluation and calibration of punching shear design recommendations in North American and international codes of practice.