Guide to Deep Learning Basics
Title | Guide to Deep Learning Basics PDF eBook |
Author | Sandro Skansi |
Publisher | Springer Nature |
Pages | 144 |
Release | 2020-01-23 |
Genre | Computers |
ISBN | 3030375919 |
This stimulating text/reference presents a philosophical exploration of the conceptual foundations of deep learning, presenting enlightening perspectives that encompass such diverse disciplines as computer science, mathematics, logic, psychology, and cognitive science. The text also highlights select topics from the fascinating history of this exciting field, including the pioneering work of Rudolf Carnap, Warren McCulloch, Walter Pitts, Bulcsú László, and Geoffrey Hinton. Topics and features: Provides a brief history of mathematical logic, and discusses the critical role of philosophy, psychology, and neuroscience in the history of AI Presents a philosophical case for the use of fuzzy logic approaches in AI Investigates the similarities and differences between the Word2vec word embedding algorithm, and the ideas of Wittgenstein and Firth on linguistics Examines how developments in machine learning provide insights into the philosophical challenge of justifying inductive inferences Debates, with reference to philosophical anthropology, whether an advanced general artificial intelligence might be considered as a living being Investigates the issue of computational complexity through deep-learning strategies for understanding AI-complete problems and developing strong AI Explores philosophical questions at the intersection of AI and transhumanism This inspirational volume will rekindle a passion for deep learning in those already experienced in coding and studying this discipline, and provide a philosophical big-picture perspective for those new to the field.
Deep Learning for Beginners
Title | Deep Learning for Beginners PDF eBook |
Author | Dr. Pablo Rivas |
Publisher | Packt Publishing Ltd |
Pages | 416 |
Release | 2020-09-18 |
Genre | Computers |
ISBN | 1838647589 |
Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow Key FeaturesUnderstand the fundamental machine learning concepts useful in deep learningLearn the underlying mathematical concepts as you implement deep learning models from scratchExplore easy-to-understand examples and use cases that will help you build a solid foundation in DLBook Description With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks. What you will learnImplement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasksExplore the role of convolutional neural networks (CNNs) in computer vision and signal processingDiscover the ethical implications of deep learning modelingUnderstand the mathematical terminology associated with deep learningCode a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent spaceImplement visualization techniques to compare AEs and VAEsWho this book is for This book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.
Introduction to Deep Learning
Title | Introduction to Deep Learning PDF eBook |
Author | Eugene Charniak |
Publisher | MIT Press |
Pages | 187 |
Release | 2019-01-29 |
Genre | Computers |
ISBN | 0262039516 |
A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.
Deep Learning
Title | Deep Learning PDF eBook |
Author | Li Deng |
Publisher | |
Pages | 212 |
Release | 2014 |
Genre | Machine learning |
ISBN | 9781601988140 |
Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
Deep Learning
Title | Deep Learning PDF eBook |
Author | Shriram K Vasudevan |
Publisher | CRC Press |
Pages | 239 |
Release | 2021-12-24 |
Genre | Computers |
ISBN | 1000481883 |
Deep Learning: A Comprehensive Guide provides comprehensive coverage of Deep Learning (DL) and Machine Learning (ML) concepts. DL and ML are the most sought-after domains, requiring a deep understanding – and this book gives no less than that. This book enables the reader to build innovative and useful applications based on ML and DL. Starting with the basics of neural networks, and continuing through the architecture of various types of CNNs, RNNs, LSTM, and more till the end of the book, each and every topic is given the utmost care and shaped professionally and comprehensively. Key Features Includes the smooth transition from ML concepts to DL concepts Line-by-line explanations have been provided for all the coding-based examples Includes a lot of real-time examples and interview questions that will prepare the reader to take up a job in ML/DL right away Even a person with a non-computer-science background can benefit from this book by following the theory, examples, case studies, and code snippets Every chapter starts with the objective and ends with a set of quiz questions to test the reader’s understanding Includes references to the related YouTube videos that provide additional guidance AI is a domain for everyone. This book is targeted toward everyone irrespective of their field of specialization. Graduates and researchers in deep learning will find this book useful.
Fundamentals of Deep Learning
Title | Fundamentals of Deep Learning PDF eBook |
Author | Nikhil Buduma |
Publisher | "O'Reilly Media, Inc." |
Pages | 272 |
Release | 2017-05-25 |
Genre | Computers |
ISBN | 1491925566 |
With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning
Deep Learning
Title | Deep Learning PDF eBook |
Author | Ian Goodfellow |
Publisher | MIT Press |
Pages | 801 |
Release | 2016-11-10 |
Genre | Computers |
ISBN | 0262337371 |
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.